SMP Node Affinity Scope Statement

Introduction

The following scope statement applies to the SMP Node Affinity Scope Statement project within the SFS-DEV-001
contract/SOW dates 08/01/2011.

Problem Statement

Followers of CPU design are observing steady increases in core count. As core count increases thread resource
contention (particularly locking) threatens to throttle Lustre server performance.

A multi-core CPUs are now common. Core count is expected to continue climbing and as it does a Lustre server will
need to increase thread count to exploit the CPU capacity. On Lustre today additional threads will contend a single
wait-queue, share one request queue, and share only a couple of global locks. Hence, without additional work,
Lustre servers are expected to perform badly on multi-core CPUs for reasons including:

® Overhead of lock contention.
® Overhead of process switching between cores.
® Scheduler attempting to balance threads across cores.

These factors can be addressed by splitting the computing cores into configurable Compute Partitions. Lustre RPC
service threads will then be bound to a specific Compute Partition. This design:

® Reduces the overhead of threads switching cores by keeping the thread running on the same core as the
cache memory.

® Avoids needless contention on the inter-CPU memory subsystem.

* Keeps RPC request processing local to the resources that they affect.

® Allows the protocol stack to scale effectively as the number of cores increases.

Project Goals

SMP node affinity is concerned with improving vertical scalability of a Lustre server by addressing software
insufficiency on multi-core machines. This will enable Lustre to fully exploit increasingly powerful server hardware as
it becomes available.

SMP node affinity will implement the following features:

® General libcfs APIs to provide a framework to support Compute Partitions
® Fine-grained SMP locking for Lustre
® SMP node affinity threading mode for Lustre

Benchmarks for metadata performance will be made on a cluster with a reasonable number of clients and a large
(12+) number of cores.

The new features will demonstrate that performance of a single metadata server with a large (12+) cores is
improved for file operations: create/remove/stat.

Code will land on WC-Lustre master branch.
In-Scope

® High level design document for SMP node affinity of Lustre.
® |mprove small message rate of LNET on multiple (12+) core server.



Improve small RPC rate of ptlrpc on multiple (12+) core server.
Improve general metadata performance on a multiple (12+) core server for narrow strip-count file.
OST stack performance will not exhibit regression.
SMP node affinity code will take place against WC-Lustre 2.x baseline. Code will cover:
® General SMP improvements for Lustre and LNET.
® libcfs APIs to support CPU partition and NUMA allocators.
® SMP node affinity threading mode for Lustre and LNET.
® LND threads
® ptlrpc service threads
® ptlrpc reply handling threads
Update manual to include SMP node affinity tuning parameters.

Out of Scope

® Wide strip count files involve additional factors that will not be helpful for demonstrating performance
improvements.

Project Constraints

® Liang is the only engineer with the expertise to lead this work.
® Test cluster with suitable multiple (12+) core nodes available to WC engineers regardless of nationality.

Key Deliverables

® Signed-off Milestone document for the project phases:
® Solution Architecture
® High-level Design
Test plan
Source code against WC-Lustre 2.x that implements the feature requirements and runs on the test cluster.
Code landed on Master WC-Lustre 2.x as Issue LU-56.

Glossary
® CPU partition

CPU partition is subset of processing resource of system, a CPU patrtition could be any number of CPU cores
in system: it can be a single core, or any specified number of cores, or stand for all cores in a NUMA node, or
represent all CPUs of a system. The number of CPU partitions can be set by libcfs APls.

A fat server will be divided into several compute partitions, each compute partition contains: cores in
CPU-partition, memory pool, message queue, threads pool, it's a little like virtual machine, although it's much
simpler since the the Lustre RPC processing threads will still have access to all Lustre global state if needed.


http://jira.whamcloud.com/browse/LU-56

	SMP Node Affinity Scope Statement

