
SMP Node Affinity Scope Statement

Introduction

The following scope statement applies to the SMP Node Affinity Scope Statement project within the SFS-DEV-001
contract/SOW dates 08/01/2011.

Problem Statement

Followers of CPU design are observing steady increases in core count. As core count increases thread resource
contention (particularly locking) threatens to throttle Lustre server performance.

A multi-core CPUs are now common. Core count is expected to continue climbing and as it does a Lustre server will
need to increase thread count to exploit the CPU capacity. On Lustre today additional threads will contend a single
wait-queue, share one request queue, and share only a couple of global locks. Hence, without additional work,
Lustre servers are expected to perform badly on multi-core CPUs for reasons including:

Overhead of lock contention.
Overhead of process switching between cores.
Scheduler attempting to balance threads across cores.

These factors can be addressed by splitting the computing cores into configurable Compute Partitions. Lustre RPC
service threads will then be bound to a specific Compute Partition. This design:

Reduces the overhead of threads switching cores by keeping the thread running on the same core as the
cache memory.
Avoids needless contention on the inter-CPU memory subsystem.
Keeps RPC request processing local to the resources that they affect.
Allows the protocol stack to scale effectively as the number of cores increases.

Project Goals

SMP node affinity is concerned with improving vertical scalability of a Lustre server by addressing software
insufficiency on multi-core machines. This will enable Lustre to fully exploit increasingly powerful server hardware as
it becomes available.

SMP node affinity will implement the following features:

General libcfs APIs to provide a framework to support Compute Partitions
Fine-grained SMP locking for Lustre
SMP node affinity threading mode for Lustre

Benchmarks for metadata performance will be made on a cluster with a reasonable number of clients and a large
(12+) number of cores.

The new features will demonstrate that performance of a single metadata server with a large (12+) cores is
improved for file operations: create/remove/stat.

Code will land on WC-Lustre master branch.

In-Scope
High level design document for SMP node affinity of Lustre.
Improve small message rate of LNET on multiple (12+) core server.



Improve small RPC rate of ptlrpc on multiple (12+) core server.
Improve general metadata performance on a multiple (12+) core server for narrow strip-count file.
OST stack performance will not exhibit regression.
SMP node affinity code will take place against WC-Lustre 2.x baseline. Code will cover:

General SMP improvements for Lustre and LNET.
libcfs APIs to support CPU partition and NUMA allocators.
SMP node affinity threading mode for Lustre and LNET.

LND threads
ptlrpc service threads
ptlrpc reply handling threads

Update manual to include SMP node affinity tuning parameters.

Out of Scope
Wide strip count files involve additional factors that will not be helpful for demonstrating performance
improvements.

Project Constraints
Liang is the only engineer with the expertise to lead this work.
Test cluster with suitable multiple (12+) core nodes available to WC engineers regardless of nationality.

Key Deliverables
Signed-off Milestone document for the project phases:

Solution Architecture
High-level Design

Test plan
Source code against WC-Lustre 2.x that implements the feature requirements and runs on the test cluster.
Code landed on Master WC-Lustre 2.x as Issue .LU-56

Glossary
CPU partition
CPU partition is subset of processing resource of system, a CPU partition could be any number of CPU cores
in system: it can be a single core, or any specified number of cores, or stand for all cores in a NUMA node, or
represent all CPUs of a system. The number of CPU partitions can be set by libcfs APIs.
A fat server will be divided into several compute partitions, each compute partition contains: cores in
CPU-partition, memory pool, message queue, threads pool, it's a little like virtual machine, although it's much
simpler since the the Lustre RPC processing threads will still have access to all Lustre global state if needed.

http://jira.whamcloud.com/browse/LU-56

	SMP Node Affinity Scope Statement

