
Using Git, Gerrit, and Maloo Effectively
Andreas Dilger

Jan 22, 2014

2
High Performance Data Division

Git https://git.hpdd.intel.com/

JIRA https://jira.hpdd.intel.com/

Gerrit Change Review https://review.whamcloud.com/

Build Server https://build.hpdd.intel.com/

Maloo Test Repository https://testing.hpdd.intel.com/

Q & A

HPDD Development Infrastructure

OpenSFS Lustre Developer Meeting 2015

3
High Performance Data Division

Gerrit tracks patches and reviews for all projects at HPDD

§  Google OpenID going away in April

§  Google users need a new OpenID provider (e.g. launchpad.net)

§  Use Settings->Link Another Identity to add new identity to account

§  Do this before Google stops working

JIRA for issue tracking

§  Gerrit now posts patch submission, landing automatically to JIRA

Jenkins for automated build & test (Autotest)

§  Three test results enforced posted to Gerrit: review-ldiskfs, review-dne-part-[12]

§  One test result not yet enforced to Gerrit: review-zfs (until LU-5242 is fixed)

Maloo tracks test results from Autotest

§  Posts into Gerrit when tests are complete

Using HPDD development tools

OpenSFS Lustre Developer Meeting 2015

4
High Performance Data Division

•  Keep patches for independent changes on separate branches

•  A git "branch" is just a pointer to some series of commits

•  Each commit or rebase moves pointer to new tip of the branch

•  All of the old commits/branches stay in repository, unreferenced

§  git checkout branch # check out specific branch

§  git branch {new_branch} # create new, keep current branch

§  git checkout -b {new_branch} # create new branch and checkout

§  git status # show modified/staged/untracked

Managing Branches

OpenSFS Lustre Developer Meeting 2015

5
High Performance Data Division

•  git branch -lv # show local branches
 b_client 986f760 LU-1842 ptlrpc: clean up ptlrpc_client setup
 b_ost_opc e3f8341 LU-1234 oss: rename OST_* RPC opcodes to OSS_*
 b_setstripe3e407b7 LU-2523 tests: disable racer setstripe until fixed
 b_quiet 98b320e LU-2468 libcfs: quiet spurious debug message
 b_message ebdaeb5 LU-1123 mdt: CERROR() messages print device
 master 98c5043 LU-6127 test: add new racer scripts to Makefile

•  git branch –alv
 [as above, plus]
 remotes/origin/HEAD -> origin/master
 remotes/origin/b2_1 e91f649 LU-3546 mdt: define mdt_obd_name()
 remotes/origin/b2_5 35046f3 LU-4958 lov: don't crash using FID [0:0:0]
 remotes/origin/b2_6 73ea776 New tag 2.6.0-RC2

Finding branches

OpenSFS Lustre Developer Meeting 2015

6
High Performance Data Division

§  git diff [-w] # show current change (no whitespace)

§  git diff --cached # show "git add" changes only

§  git grep -p {regexp} # show all files in repository with regular expression

§  git log [branch|path] # show commits (branch/dir/file)

§  git log --grep {regexp} # search commit messages with regular expression

§  git log -G {regexp} # search commits diffs for specific regexp

§  git log -S {string} # search commits that add/remove specific string

§  git log -p # print patch/diff with each log message

§  git show [-w] [commit]# show specific commit (no whitespace)

§  git describe {commit} # tagged name of commit (e.g. v2_3_61_0-25-g406e943)

Searching in Git

OpenSFS Lustre Developer Meeting 2015

7
High Performance Data Division

•  Shows history of commits that modified some line number

§  git blame lustre/obdclass/class_obd.c
11330397 (nathan 2007-02-10 06:33:41 +0000 386)
8af4adf8 (rread 2003-12-19 19:45:29 +0000 387)
8af4adf8 (rread 2003-12-19 19:45:29 +0000 388)
f193250f (adilger 2002-06-03 22:36:53 +0000 389)

§  git show [commit] # what was in commit

•  Show history of commits before a specific commit

§  git blame lustre/obdclass/class_obd.c {commit}~1

Finding change history of code

OpenSFS Lustre Developer Meeting 2015

8
High Performance Data Division

•  Install Git commit hooks for patch verification

§  ln -sf ../../build/commit-msg .git/hooks

§  ln -sf ../../build/prepare-commit-msg .git/hooks

•  Read the comments provided by prepare-commit-msg hook!

§  git add [path ...] # stage specified file(s) or dirs for commit

§  git add [–u] # stage all changes for commit

§  git commit -av # stage and commit all changes, show diff

§  git commit -av --amend # add current changes to previous commit

§  git reset --hard {branch|HEAD~n} # revert to branch or last n commits

§  git cherry-pick {branch|commit} # copy specific patch to current branch

Committing changes

OpenSFS Lustre Developer Meeting 2015

9
High Performance Data Division

•  git commit -p # add individual patch hunks
 diff --git a/obd_support.h b/obd_support.h
 @@ -482,6 +482,8 @@ int obd_alloc_fail(const void *ptr,
 #define OBD_FAIL_LFSCK_NO_AUTO 0x160b
 #define OBD_FAIL_LFSCK_NO_DOUBLESCAN 0x160c

 +#define OBD_FAIL_FID_MAPPING 0x1500
 +
 /* Assign references to moved code to reduce code changes */
 #define OBD_FAIL_PRECHECK(id) CFS_FAIL_PRECHECK(id)
 #define OBD_FAIL_CHECK(id) CFS_FAIL_CHECK(id)
 Stage this hunk [y,n,q,a,d,/,e,?]?

•  git citool # GUI tool to add patch hunks

Committing partial changes

OpenSFS Lustre Developer Meeting 2015

10
High Performance Data Division

•  Patches should be kept up-to-date with master

•  HPDD Checkpatch marks patches Verified: -1 that don't apply

•  Multiple dependent patches in a single series

git rebase [-i] {master|b2_5} # edit/reorder patches

git add –u # add updated file(s) to commit

git rebase {--continue|--abort} # apply or discard changes

git rebase --skip # drop current patch entirely

git rebase --onto {branch} # rebase onto a new branch

Rebasing patches

OpenSFS Lustre Developer Meeting 2015

11
High Performance Data Division

$ git rebase -i {master|HEAD~2} # rebase last two patches
pick a427873 LU-1798 ptlrpc: add procname.uid jobid
fixup 52325a7 LU-1798 foo: few changes to previous patch
reword 4b3e88c LU-1798 tests: don't set jobid if not changing

Rebase 67af9ea..52325a7 onto 67af9ea
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
These lines can be re-ordered; they are executed top to bottom.

Rebasing a patch series

OpenSFS Lustre Developer Meeting 2015

12
High Performance Data Division

All old commits/branches remain in the repository

$ git reflog
fdd29dc HEAD@{0}: commit (amend): LU-2468 libcfs: quiet debug messages
da6cf33 HEAD@{1}: commit: LU-2468 libcfs: quiet debug messages
0b3e852 HEAD@{2}: checkout: moving from b_cleanup9 to b_cleanup7
5ea4d20 HEAD@{3}: rebase finished: returning to refs/heads/b_cleanup9
5ea4d20 HEAD@{4}: rebase: LU-1798 tests: don't set jobid if not changing
0b3e852 HEAD@{5}: checkout: moving from b_cleanup9 to 0b3e852a58^0

git rebase --abort

git fsck [--unreachable] [--lost+found]

What to do when things go wrong

OpenSFS Lustre Developer Meeting 2015

13
High Performance Data Division

§  git format-patch HEAD~n # Export last n commits to patch

§  git am {patch …} # Import patch(es) to commit

§  git send-email HEAD~n # Email last n commits
§  Default values in $HOME/.gitconfig or .git/config in local repository

[user]

 name = Andreas Dilger

 email = andreas.dilger@intel.com

[sendemail]

 smtpserver = shawmail.cg.shawcable.net

 smtpserverport = 25

 confirm = compose

Extracting and sharing changes

OpenSFS Lustre Developer Meeting 2015

14
High Performance Data Division

Commit message should describe patch well

§ What problem/feature does this patch address?

§ Usage/test that triggered problem, with error messages

§ Commit that introduced problem

§ Performance improvements resulting from patch

§ How it is being fixed, clear description of tricky code

§  Initial inspectors understand the patch more quickly

§ Gatekeeper understands importance of the patch

§ Anyone dealing with the patch later has some guidance

https://wiki.hpdd.intel.com/display/PUB/Commit+Comments

OpenSFS Lustre Developer Meeting 2015

15
High Performance Data Division

Use the Test-Parameters: tag in a commit message:
§  Test-Parameters: fortestonly # limit testing for a trial patch
§  ... testlist=sanity,sanity,sanity # add additional tests
§  ... ostfilesystemtype=zfs # use a specific backing fstype
§  ... clientbuildno=81 # old client new server interop
§  ... serverbuildno=81 # new client old server interop
§  ... mdtcount=8,ostcount=8 # change server config
§  ... alwaysuploadlogs # upload all logs even on success

https://wiki.hpdd.intel.com/display/PUB/Changing+Test+Parameters+with+Gerrit+Commit+Messages

Control Autotest with commit messages

OpenSFS Lustre Developer Meeting 2015

16
High Performance Data Division

Using Gerrit

Set up defaults to your liking

OpenSFS Lustre Developer Meeting 2015

17
High Performance Data Division

Gerrit patch status

OpenSFS Lustre Developer Meeting 2015

18
High Performance Data Division

Searching is possible, but not very easy to use
§  message:LU-2250 is:merged # patches landed for LU-2250
§  branch:master Verified>=1 -Verified<=-1 CodeReview>=1 -CodeReview<=-1
§  reviewer:self -owner:self label:Code-Review=0,user=self label:Verified

Search shortcut/keyword for Firefox

review 12345 # open change #12345

review message:LU-2250 # search commit messages for LU-2250

Gerrit Searching

OpenSFS Lustre Developer Meeting 2015

19
High Performance Data Division

§  git fetch http:… && git checkout FETCH_HEAD # get patch tree (#1, #2, #3)

§  git checkout -b b_alex_patch # named branch for other patch

§  git checkout -b b_my_patch # named branch for my patch

§  git cherry-pick {my patch} # apply new patch on top

§  git log # check commit hash unchanged (#4)

§  git push … HEAD:refs/for/master # push new patch to Gerrit

DO NOT rebase branch to latest master before submitting!
§  Original developer should rebase or land their patch first

(Re)basing a patch on an existing change

 1 2
3

4

OpenSFS Lustre Developer Meeting 2015

20
High Performance Data Division

Maloo permanently holds all test results for all patches

Test logs are kept as long as possible (months)

https://testing.hpdd.intel.com/

Reviewing overall test results in Maloo

OpenSFS Lustre Developer Meeting 2015

21
High Performance Data Division

Reviewing a test failure in Maloo

Please link test failures to bugs

OpenSFS Lustre Developer Meeting 2015

22
High Performance Data Division

Searching in Maloo

OpenSFS Lustre Developer Meeting 2015

23
High Performance Data Division

Search results in Maloo

OpenSFS Lustre Developer Meeting 2015

OpenSFS Lustre Developer Meeting 2015

24
High Performance Data Division

Can limit search incrementally

OpenSFS Lustre Developer Meeting 2015

OpenSFS Lustre Developer Meeting 2015

25
High Performance Data Division

Monitoring Test Progress

OpenSFS Lustre Developer Meeting 2015

OpenSFS Lustre Developer Meeting 2015

26
High Performance Data Division

Keep patches moving forward

Developers are responsible for their own patches
§  Update patches based on inspections

§  Keep inspections and testing moving forward

Provide inspection feedback for others in a timely manner

After inspection, help move patch to next state
§  Two or more inspectors on the patch?

§  Tests have passed or triaged and retested as needed?

§  Gatekeeper landing requested if patch is ready

Good inspections avoid more effort finding defects later
§  Chance to find and fix latent bugs, cleanup code

OpenSFS Lustre Developer Meeting 2015

27
High Performance Data Division

•  Need to triage all test failures before resubmitting

•  Patch may otherwise be adding new intermittent bugs

•  Associate or Raise bugs in Maloo for all test failures

•  Search for and triage similar failures via Maloo, JIRA

•  Can be done more efficiently in batches

•  Data needed to prioritize bugs causing the most failures

•  This speeds up fixing the most frequent failures

•  This in turn speeds up every other patch landing

Autotest failures affect everyone

OpenSFS Lustre Developer Meeting 2015

