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High Performance Data Division

Git https://git.hpdd.intel.com/

JIRA https://jira.hpdd.intel.com/

Gerrit Change Review https://review.whamcloud.com/

Build Server https://build.hpdd.intel.com/

Maloo Test Repository https://testing.hpdd.intel.com/

Q & A

HPDD Development Infrastructure
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High Performance Data Division

Gerrit tracks patches and reviews for all projects at HPDD

§  Google OpenID going away in April

§  Google users need a new OpenID provider (e.g. launchpad.net)

§  Use Settings->Link Another Identity to add new identity to account

§  Do this before Google stops working

JIRA for issue tracking

§  Gerrit now posts patch submission, landing automatically to JIRA

Jenkins for automated build & test (Autotest)

§  Three test results enforced posted to Gerrit: review-ldiskfs, review-dne-part-[12]

§  One test result not yet enforced to Gerrit: review-zfs (until LU-5242 is fixed)

Maloo tracks test results from Autotest

§  Posts into Gerrit when tests are complete

Using HPDD development tools
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High Performance Data Division

•  Keep patches for independent changes on separate branches

•  A git "branch" is just a pointer to some series of commits

•  Each commit or rebase moves pointer to new tip of the branch

•  All of the old commits/branches stay in repository, unreferenced

§  git checkout branch    # check out specific branch

§  git branch {new_branch}   # create new, keep current branch

§  git checkout -b {new_branch}  # create new branch and checkout

§  git status # show modified/staged/untracked

Managing Branches
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High Performance Data Division

•  git branch -lv # show local branches
  b_client 986f760 LU-1842 ptlrpc: clean up ptlrpc_client setup
  b_ost_opc e3f8341 LU-1234 oss: rename OST_* RPC opcodes to OSS_*
  b_setstripe3e407b7 LU-2523 tests: disable racer setstripe until fixed
  b_quiet 98b320e LU-2468 libcfs: quiet spurious debug message
  b_message ebdaeb5 LU-1123 mdt: CERROR() messages print device
  master 98c5043 LU-6127 test: add new racer scripts to Makefile

•  git branch –alv
  [as above, plus]  
  remotes/origin/HEAD -> origin/master
  remotes/origin/b2_1      e91f649 LU-3546 mdt: define mdt_obd_name()
  remotes/origin/b2_5      35046f3 LU-4958 lov: don't crash using FID [0:0:0]
  remotes/origin/b2_6      73ea776 New tag 2.6.0-RC2

Finding branches
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§  git diff [-w]   # show current change (no whitespace)

§  git diff --cached  # show "git add" changes only

§  git grep -p {regexp} # show all files in repository with regular expression

§  git log [branch|path] # show commits (branch/dir/file)

§  git log --grep {regexp} # search commit messages with regular expression

§  git log -G {regexp} # search commits diffs for specific regexp

§  git log -S {string} # search commits that add/remove specific string

§  git log -p   # print patch/diff with each log message

§  git show [-w] [commit]# show specific commit (no whitespace)

§  git describe {commit} # tagged name of commit (e.g. v2_3_61_0-25-g406e943)

Searching in Git
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High Performance Data Division

•  Shows history of commits that modified some line number

§  git blame lustre/obdclass/class_obd.c
11330397     (nathan 2007-02-10 06:33:41 +0000 386)
8af4adf8        (rread 2003-12-19 19:45:29 +0000 387)
8af4adf8        (rread 2003-12-19 19:45:29 +0000 388)
f193250f       (adilger 2002-06-03 22:36:53 +0000 389)

§  git show [commit] # what was in commit

•  Show history of commits before a specific commit

§  git blame lustre/obdclass/class_obd.c {commit}~1

Finding change history of code
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High Performance Data Division

•  Install Git commit hooks for patch verification

§  ln -sf ../../build/commit-msg .git/hooks

§  ln -sf ../../build/prepare-commit-msg .git/hooks

•  Read the comments provided by prepare-commit-msg hook!

§  git add [path ...]    # stage specified file(s) or dirs for commit

§  git add [–u]     # stage all changes for commit

§  git commit -av    # stage and commit all changes, show diff

§  git commit -av --amend  # add current changes to previous commit

§  git reset --hard {branch|HEAD~n} # revert to branch or last n commits

§  git cherry-pick {branch|commit} # copy specific patch to current branch

Committing changes

OpenSFS Lustre Developer Meeting 2015 



9 
High Performance Data Division

•  git commit -p  # add individual patch hunks
    diff --git a/obd_support.h b/obd_support.h
    @@ -482,6 +482,8 @@ int obd_alloc_fail(const void *ptr,
      #define OBD_FAIL_LFSCK_NO_AUTO                    0x160b
      #define OBD_FAIL_LFSCK_NO_DOUBLESCAN   0x160c
 
    +#define OBD_FAIL_FID_MAPPING                         0x1500
    +
      /* Assign references to moved code to reduce code changes */
      #define OBD_FAIL_PRECHECK(id)       CFS_FAIL_PRECHECK(id)
      #define OBD_FAIL_CHECK(id)               CFS_FAIL_CHECK(id)
    Stage this hunk [y,n,q,a,d,/,e,?]? 

•  git citool   # GUI tool to add patch hunks

Committing partial changes
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High Performance Data Division

•  Patches should be kept up-to-date with master

•  HPDD Checkpatch marks patches Verified: -1 that don't apply

•  Multiple dependent patches in a single series

git rebase [-i] {master|b2_5} # edit/reorder patches

git add –u      # add updated file(s) to commit

git rebase {--continue|--abort} # apply or discard changes

git rebase --skip # drop current patch entirely

git rebase --onto {branch} # rebase onto a new branch

Rebasing patches
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High Performance Data Division

$ git rebase -i {master|HEAD~2} # rebase last two patches 
pick       a427873 LU-1798 ptlrpc: add procname.uid jobid
fixup     52325a7 LU-1798 foo: few changes to previous patch
reword 4b3e88c  LU-1798 tests: don't set jobid if not changing

# Rebase 67af9ea..52325a7 onto 67af9ea
# Commands:
#  p, pick = use commit
#  r, reword = use commit, but edit the commit message
#  e, edit = use commit, but stop for amending
#  s, squash = use commit, but meld into previous commit
#  f, fixup = like "squash", but discard this commit's log message
#  x, exec = run command (the rest of the line) using shell
# These lines can be re-ordered; they are executed top to bottom.

Rebasing a patch series
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High Performance Data Division

All old commits/branches remain in the repository

$ git reflog
fdd29dc HEAD@{0}: commit (amend): LU-2468 libcfs: quiet debug messages
da6cf33 HEAD@{1}: commit: LU-2468 libcfs: quiet debug messages
0b3e852 HEAD@{2}: checkout: moving from b_cleanup9 to b_cleanup7
5ea4d20 HEAD@{3}: rebase finished: returning to refs/heads/b_cleanup9
5ea4d20 HEAD@{4}: rebase: LU-1798 tests: don't set jobid if not changing
0b3e852 HEAD@{5}: checkout: moving from b_cleanup9 to 0b3e852a58^0

git rebase --abort

git fsck [--unreachable] [--lost+found]

What to do when things go wrong
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§  git format-patch HEAD~n  # Export last n commits to patch

§  git am {patch …}    # Import patch(es) to commit

§  git send-email HEAD~n  # Email last n commits
§  Default values in $HOME/.gitconfig or .git/config in local repository

[user]  

        name = Andreas Dilger

        email = andreas.dilger@intel.com

[sendemail]

        smtpserver = shawmail.cg.shawcable.net

        smtpserverport = 25

        confirm = compose

Extracting and sharing changes

OpenSFS Lustre Developer Meeting 2015 



14 
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Commit message should describe patch well

§ What problem/feature does this patch address? 

§ Usage/test that triggered problem, with error messages 

§ Commit that introduced problem 

§ Performance improvements resulting from patch 

§ How it is being fixed, clear description of tricky code 

§  Initial inspectors understand the patch more quickly 

§ Gatekeeper understands importance of the patch

§ Anyone dealing with the patch later has some guidance

https://wiki.hpdd.intel.com/display/PUB/Commit+Comments
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Use the Test-Parameters: tag in a commit message:
§  Test-Parameters: fortestonly # limit testing for a trial patch
§  ... testlist=sanity,sanity,sanity # add additional tests
§  ... ostfilesystemtype=zfs # use a specific backing fstype
§  ... clientbuildno=81     # old client new server interop
§  ... serverbuildno=81     # new client old server interop
§  ... mdtcount=8,ostcount=8 # change server config
§  ... alwaysuploadlogs  # upload all logs even on success

https://wiki.hpdd.intel.com/display/PUB/Changing+Test+Parameters+with+Gerrit+Commit+Messages

Control Autotest with commit messages
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Using Gerrit

Set up defaults to your liking
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Gerrit patch status

OpenSFS Lustre Developer Meeting 2015 



18 
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Searching is possible, but not very easy to use
§  message:LU-2250 is:merged # patches landed for LU-2250
§  branch:master Verified>=1 -Verified<=-1 CodeReview>=1 -CodeReview<=-1
§  reviewer:self -owner:self label:Code-Review=0,user=self label:Verified

Search shortcut/keyword for Firefox

review 12345     # open change #12345

review message:LU-2250  # search commit messages for LU-2250

Gerrit Searching
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§  git fetch http:… && git checkout FETCH_HEAD # get patch tree (#1, #2, #3)

§  git checkout -b b_alex_patch  # named branch for other patch

§  git checkout -b b_my_patch  # named branch for my patch

§  git cherry-pick {my patch} # apply new patch on top

§  git log # check commit hash unchanged (#4)

§  git push … HEAD:refs/for/master # push new patch to Gerrit

DO NOT rebase branch to latest master before submitting!
§  Original developer should rebase or land their patch first 

(Re)basing a patch on an existing change

     1 2 
3 

4 
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Maloo permanently holds all test results for all patches

Test logs are kept as long as possible (months)

https://testing.hpdd.intel.com/

Reviewing overall test results in Maloo
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Reviewing a test failure in Maloo 
 

Please link test failures to bugs
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Searching in Maloo
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Search results in Maloo
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Can limit search incrementally
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Monitoring Test Progress
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Keep patches moving forward

Developers are responsible for their own patches
§  Update patches based on inspections

§  Keep inspections and testing moving forward

Provide inspection feedback for others in a timely manner

After inspection, help move patch to next state
§  Two or more inspectors on the patch?

§  Tests have passed or triaged and retested as needed?

§  Gatekeeper landing requested if patch is ready

Good inspections avoid more effort finding defects later
§  Chance to find and fix latent bugs, cleanup code
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•  Need to triage all test failures before resubmitting

•  Patch may otherwise be adding new intermittent bugs

•  Associate or Raise bugs in Maloo for all test failures

•  Search for and triage similar failures via Maloo, JIRA

•  Can be done more efficiently in batches

•  Data needed to prioritize bugs causing the most failures

•  This speeds up fixing the most frequent failures

•  This in turn speeds up every other patch landing

Autotest failures affect everyone
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