

6/7/2012 OpenSFS TWG 2012 Requirements p. 1

OpenSFS TWG Lustre Requirements
This document summarizes requirements for new Lustre features, which the OpenSFS

Technical Working Group (TWG) gathered from the community in early 2012. Based on these

findings, the TWG recommends development of features to address requirements of immediate

importance to the OpenSFS membership.

Table of Contents:
OpenSFS TWG Lustre Requirements

Recommendations to the OpenSFS Board

Gathered Requirements

Availability Requirements

Avoid RPC timeouts

Scalable fault management

Storage Management Requirements

HSM and storage management infrastructure

OST migration/rebalancing

Asynchronous file replication (mirroring)

Complex file layouts

Dynamic layout for subset of a file

Storage pool quotas

Unified storage target

Performance Requirements

Single client I/O performance

File create performance

Directory traversal and attribute retrieval

Single shared file performance

Quality of service

Locality and scalability

Small and medium I/O performance

LNET Requirements

LNET channel bonding

Improved LNET robustness

Dynamic LNET configuration

IPv6

Manageability and Administrative Requirements

Better support for newer kernels

Improved configuration robustness

Administrative shutdown

Better userspace tools

Snapshots

Arbitrary OST assignment

6/7/2012 OpenSFS TWG 2012 Requirements p. 2

Application Interface Requirements

Improved storage semantics/interfaces

Better user tool API

POSIX extensions for file sets

POSIX extensions for scalable opens

Other Requirements

Varying page-sizes

Mixed endian support

Improved security infrastructure

Improved Lustre Tests

Improved Lustre internals documentation

Appendices

2011 Required Rates and Capacities

Requirements funded in 2011

Performance Requirements

Metadata server performance

Metadata server scalability

Foundational Requirements

Support for alternate backend file systems

Manageability and Administrative Requirements

File system consistency checks

User Identity Mapping

2011 Deprecated Requirements

Merged features

Balancing storage use

Adaptive storage layout

Deleted features

Backend storage investigation

Allowing for controlled partial-system maintenance

New Requirements for 2012

Change Log

6/7/2012 OpenSFS TWG 2012 Requirements p. 3

Recommendations to the OpenSFS Board

During the course of our investigation this year, the TWG found significant agreement among

members on four broad areas--availability, storage management, performance, and Lustre

networking--that OpenSFS should address in its forthcoming development RFPs.

Availability encompasses requirements to make Lustre more robust and better able to

tolerate errors. The highest priority by consensus is to address Lustre’s dependence on

timeouts and requires development to avoid timeouts as is best possible. This

category also requires improved fault management.

Storage Management is a new area for Lustre that builds on the foundational work started

by CEA for their HSM project. In this category, we seek to extend CEA’s work to make

Lustre more relevant in modern data centers and more competitive with other file

systems by enabling enterprise class features such as object migration, file mirroring,

and replication. We know that these changes will require a common infrastructure, on

which creating these closely related features and enhancements would be easily

possible.

Performance continues to be an area of concern. We are hopeful that the new metadata

features currently under development (SMP affinity, distributed namespace) will greatly

improve performance of the metadata server. Nonetheless, there are workloads where

Lustre performance continues to need improvement and we want to address

architectural bottlenecks for both bulk I/O and metadata performance of a single Lustre

client.

Lustre networking (LNET) is the transport for remote procedure calls (RPCs) to the Lustre

servers. We identified a number of requirements for improving Lustre scalability,

configurability and reliability of Lustre by enhancing core networking functionality.

We believe the requirements and features described in the availability and storage management

categories are foundational in nature and, as a result, OpenSFS needs to start working on them

now to ensure feature landings in years to come. The table below describes the four

categories and identifies requirements for each that could be addressed in upcoming RFPs. A

complete listing of all requirements gathered over the last several months follows this section.

6/7/2012 OpenSFS TWG 2012 Requirements p. 4

Category (prioritized) Requirements (not prioritized)

File system availability and robustness Avoid RPC timeouts

Scalable fault management

Storage management HSM and storage management infrastructure

OST migration/rebalancing

Performance Single client IO performance

File create performance

Directory traversal and attribute retrieval

Lustre networking (LNET) LNET channel bonding

Improved LNET robustness

Dynamic LNET configuration

TWG members expect OpenSFS to take a broad view and consider work that needs to be done

in Lustre to pave the way for future functionality. Investment in these foundational

requirements will resolve some of the remaining technical debt in the Lustre code and set the

stage for features delivered in the 2014 time frame.

In addition, we note that there has been considerable interest in restructuring the validation tests

included with each Lustre build. Although this level of interest suggests that community

investment may be warranted in the future to help create a consistent solution, we believe the

requirement should be addressed by the Community Development Working Group (CDWG)

rather than be defined as a roadmap item by the TWG.

At this time, the TWG recommends that OpenSFS pursue RFPs for both performance and

foundational requirements, focusing on at least one requirement from the prioritized categories

in the table above. These requirements have been discussed by the members of the TWG and

the category ordering has been reached by consensus (http://goo.gl/Lqg7s).

http://goo.gl/Lqg7s

6/7/2012 OpenSFS TWG 2012 Requirements p. 5

Gathered Requirements

The OpenSFS TWG published its first list of requirements and recommendations to the

OpenSFS Board in March 2011 (http://goo.gl/cZSWG). As a result, the OpenSFS has funded

development of features that address requirements to improve metadata server performance,

metadata server scalability, online file system consistency checks, and user identity mapping.

In preparation for the 2012 Lustre Users Group meeting, the OpenSFS TWG held weekly

conference calls since February 2012 to consider new requirements to add to the remaining

requirements from its original list. Minutes from these meetings have been posted to the

OpenSFS Discuss reflector (http://lists.opensfs.org/pipermail/discuss-opensfs.org/).

The working group discussed a number of new requirements during this year’s investigation that

are listed in the appendix. These topics have been integrated into the requirements sections

that follow. Requirements from 2011 that were moved or merged have been saved in the

appendix.

Please note that the order of requirements and features below does NOT imply any ranking or

preference.

Availability Requirements

The following requirements address improvements to Lustre availability, fault tolerance and

recovery at future system scales. Investment in one of these technologies now, will provide the

foundation that Lustre needs to achieve the next levels of system scale.

Avoid RPC timeouts

Users sometimes perceive Lustre as unstable because of periodic pauses in execution as

Lustre waits for an overloaded server, or a timeout to expire. We have discussed health

networks as a means of providing lower latency fault detection and improved error handling.

This will be a scalability feature that by providing an active, deterministic mechanism for

communicating system status will avoid the sequence of cascading timeouts that limits Lustre at

scale. For example, the current use of pings is difficult to tune at scale, and also imposes a

significant overhead on the network, impact to IO performance, and impact to OS noise/jitter.

The health network should be a high priority, efficient, and reliable communications channel to

avoid the need for timeouts and make client/server interactions more deterministic. As a result,

we expect work fulfilling this requirement to improve recovery times, facilitate error detection

within Lustre and improve file system responsiveness.

Scalable fault management

While it is already the case that today's supercomputers have a marked dependence on their

file systems for productive use, this dependency will continue to rise as we see more and more

center-wide file systems. To minimize the downtime for the entire center, reliability must

http://goo.gl/cZSWG)
http://lists.opensfs.org/pipermail/discuss-opensfs.org/

6/7/2012 OpenSFS TWG 2012 Requirements p. 6

increase and recovery from faults must be bounded in time. Lustre must be able to recover in

O(log n) time or better as a mid-term goal to meet this requirement.

Lustre must expose errors it detects to standard administrative infrastructures. We cannot

continue with error logs as being used today. Instead, Lustre must detect, collect, and parse

faults then distribute the errors in a scalable manner to the administrative interface for

notification.

Storage Management Requirements

For purposes of this discussion, migration is the ability to move objects within the same file

system. Mirroring is the ability to create replicas of objects referenced by the same metadata

within the same file system. This is different from remote replication, which is the process of

copying data from one file system to another separate file system (namespace). Remote

replication is possible today with Lustre rsync. More intelligent tools based on change logs,

rather than walking the directory tree, are anticipated. Dynamic layouts, object migration, and

mirroring will benefit from a common infrastructure introduced with the current Hierarchical

Storage Management (HSM) project.

HSM and storage management infrastructure

There is an ongoing project to implement Hierarchical Storage Management (HSM) for Lustre

that will provide the foundational infrastructure needed for several of the features listed here. In

particular, migration relies on the layout lock feature to ensure that object migration maintains

file coherency. The current layout lock implementation will require work to manage files that are

not at rest. Furthermore, the Lustre client will need to be made aware of these layout changes.

The Lustre changelog feature may need improved scalability so that policy engines that utilize

these features do not negatively impact performance.

OST migration/rebalancing

Move objects between OSTs to more evenly distribute free space among the OSTs or to

distribute objects to new OSTs added to expand the file system. This same facility can be used

to manage space usage between tiers (OST pools) of storage to allow configurations with burst

buffers, and archival disks. Similarly, it is possible to migrate all objects off of an OST before it

is replaced or removed from the file system.

Asynchronous file replication (mirroring)

Create multiple copies of a file within the same file system namespace (ala HDFS) after the file

is initially written. This is useful for availability of important system files, without the need to add

copies to all files in the filesystem. Real-time mirroring as the file is written would require

additional coordination and recovery, or synchronous IO operations, and should be considered

as a separate feature.

6/7/2012 OpenSFS TWG 2012 Requirements p. 7

Complex file layouts

As application middleware, such as HDF5, become more common, Lustre should allow different

file layouts tuned for the different file types. This would also allow the layout of a single file, or

different parts of the file, to change as it grows or gains concurrent writers, to reduce overhead

for small files, and increase bandwidth/concurrency for large files.

Dynamic layout for subset of a file

Data managed through an HSM, needs to move from slow data (tape) to fast (disk) during job

execution. However, to speed access to critical data, it may be necessary to only restore part of

a file. Any layout definition needs to support files split between different media types.

Storage pool quotas

Labeling heterogeneous OST classes is done via OST pools today. There needs to be a

mechanism to control access and resource usage of OST pools. OST pool quotas would allow

more flexible resource allocation than binary (allow/disallow) permissions like ACLs. A related

issue is labeling subsets of OSTs for management and user convenience.

Unified storage target

It may be useful to remove the distinction between MDTs and OSTs and instead consider

storage in terms of performance for different workloads. We then use the storage pool most

appropriate for the workload. Small I/O’s, or the beginning of a file, for example, could use

storage tuned for this access pattern.

Performance Requirements

The requirements in this section highlight areas where Lustre performance could be improved.

Deliverables that meet these requirements should provide immediate benefits.

Single client I/O performance

Single client performance can be CPU bound,. Although new multi-threaded RPC code has

improved performance of a single-threaded reader/writer, there are still bottlenecks, such as the

number of simultaneous RPCs in flight, internal lock contention, and SMP-unfriendly code, that

prevent a single client from maximizing the performance available from the Lustre file system

and its interconnect network. The client is currently also limited to a single metadata-modifying

RPC in flight, which will also impact DNE MDT performance.

File create performance

Previous work to improve metadata performance on a single MDS have gained significant

improvements to directory and device node creation, but the benefit to creating files with objects

on the OSTs has been less clear. Thus, file creation performance (in particular, OST object

precreation) remains an area where Lustre requires significant effort to meet user requirements

(for example, see the Appendix). As with the MDS performance tuning, there are likely also

SMP scaling bottlenecks in the OST code that can be addressed as part of a larger

performance review.

6/7/2012 OpenSFS TWG 2012 Requirements p. 8

Directory traversal and attribute retrieval

Directory listings performance has increased with recent metadata projects, but “ls -l” speeds for

a single client should still be improved. Some possible areas for exploration are client-OST

interactions or some version of a size-on-mds mechanism (e.g. synchronous recording of open-

for-write, using the HSM “dirty” flag, or simplifications for single-client access).

Single shared file performance

Users desire single, shared files for certain applications, though this does not always provide

the best performance due to locking and other implementation issues. Lustre must allow single

files to take full advantage of capabilities of the storage system, and must have interfaces that

allow users to exploit their knowledge of their IO patterns.

Quality of service

Existing deployments currently have no mechanism to balance the performance needs of

interactive users against the needs of large-scale compute jobs. For example, it is possible and

likely that directory listings will encounter absurdly long execution times when competing against

a 200,000 core checkpoint operation. To maintain usability in such scenarios, Lustre must be

able to allocate a {job,cluster,user} a share of IOPS and bandwidth consummate with the priority

levels assigned by an administrator.

Locality and scalability

Large systems will need to use client locality to determine the OSSs for storage in order to avoid

contention across the interconnect. Locality should allow clients to reduce the time they spend

checking the status of all servers in the file system. WAN users should be able to avoid

frequent health communication.

Small and medium I/O performance

Small and medium I/O requests (4KB – 256KB) are common in many HPC workloads and can

be substantially lower on Lustre than on local file systems, even when the local file system is

supported by disk arrays over a SAN environment as disk seek latencies dominate any network

overheads. Lustre should be optimized for a variety of I/O request sizes including small and

medium request sizes particularly in file per process workloads where distributed lock

management is not a bottleneck.

LNET Requirements

As more compute systems use shared Lustre file systems, the robustness and configuration of

the LNET layer will become more critical to successful file system deployments.

LNET channel bonding

LNET routers and servers are currently limited to a single channel provided by a single instance

of the LND. This restriction limits bandwidth and reliability of an LNET connection to a single

interconnect. LNET should allow multiple LNDs to be bonded as a group in order to enable load

balancing and failover between LNET endpoints.

6/7/2012 OpenSFS TWG 2012 Requirements p. 9

Improved LNET robustness

The original LNET design used multiple routers to guarantee connectivity, but performance

suffers when there are large numbers of routers. This effect can be exasperated when there

are multiple network levels as router transmit credits become depleted within a network.

Furthermore, performance of a group of routers can suffer by one poorly behaving router. This

investigation should consider mechanisms for improving LNET robustness and router

performance.

Dynamic LNET configuration

LNET configuration currently uses static routes and requires LNET to restart to capture

configuration changes. LNET needs to adopt a more IP-like configuration so that network

changes can be more easily programmed and qualified.

IPv6

Support for IPv6 requires a change in the NID format to accommodate a 128-bit IPv6 address in

the address-within-network field. Adding support for IPv6 will change the network protocol so

the impact is more involved than just changing internal data structures. This affects all protocol

levels: LNDs, LNET and Lustre. Lustre should support a phased approach to make the feature

available before the site upgrades to IPv6.

Manageability and Administrative Requirements

Requirements in this section highlight areas of improvement for Lustre to reduce administrative

burden or address shortcomings in its integration to the compute environment.

Better support for newer kernels

Security updates for Lustre kernels remain a sore point for system administrators. Using

patches to the kernel on the server side introduces a potential delay to rolling out updates. Also,

updated distros require new kernels to be supported. Lustre must reduce or eliminate its need to

patch the kernel on the server, and should support recent kernel.org kernels.

Improved configuration robustness

Need to make file system configuration robust in the face failures, such as during OST additions

to an existing file system. We should anticipate similar errors with DNE when we expand the

number of MDTs in the namespace. Dynamic configuration using registration data from the

MGS is one possible replacement for the current static configuration.

Other possible improvements are unifying the syntax between set_param and conf_param, and

possibly replacing the old llog-based config file with a simple editable text file.

Administrative shutdown

Lustre needs a safe server shutdown to ensure that clients flush state to disk. This capability

will be necessary for transparent server version upgrades, and to avoid potential loss of

unwritten data in the case of known server shutdown.

6/7/2012 OpenSFS TWG 2012 Requirements p. 10

Better userspace tools

The lctl command is confusing to use, with mixes of fixed and non-fixed positional parameters,

and poor documentation. Further, the output of many of the sub commands are not particularly

well designed, making them both difficult to read for a human, and difficult to parse by

command-line scripting. We desire clean, well-designed command line interfaces.

Snapshots

While backing up a large scale Lustre file system to offline storage may not be a practical

endeavor, allowing the possibility is a desirable goal. To support this activity, Lustre must be

able to efficiently quiesce the the file system and make a stable snapshot. Snapshots made in

this way must be easily accessible to users -- subject to normal access control measures -- to

allow easy recovery from simple mistakes without requiring administrator assistance.

Arbitrary OST assignment

Lustre should allow specific stripes to be assigned to specific OSTs in a specific order rather

than just heuristically. This has a potential impact on WAN operations.

Application Interface Requirements

The requirements in this section highlight areas of improvement for Lustre to reduce the

overhead experienced by applications, both in development and in operation.

Improved storage semantics/interfaces

Lustre should explore alternatives to POSIX access methods that can be used to support

exascale file sytem requirements. At the scales of today's large systems -- and as those scales

are expected to grow in the future -- the familiar semantics of POSIX incur challenges to

developers seeking to extract maximum performance from the hardware. In the future, Lustre

must allow developers to avoid the performance pitfalls -- both by improving the performance

when operating in POSIX mode, or by allowing one to tell the system "I know what I am doing"

and step outside of those semantics. Applications should be able to inform Lustre that they do

not need the locking implied by POSIX semantics and/or give hints to the file system as to what

their usage pattern is expected to look like. Applications should be able to submit requests that

avoid copies without blocking on the completion of those requests.

Better user tool API

llapi as it exists now is really largely the internals of the lfs command. As a result, many of the

functions print directly to stdout, which does not lend itself to usability as a library. We desire

clean APIs which can be used by many programs to interact with Lustre to gather and present

data in a format of the program's own choosing.

POSIX extensions for file sets

Migration and replication could be facilitated if Lustre allowed operations on sets of files. GPFS

has this today. If done right, the set will appear in the directory and quotas can be allocated on

the set, not just the component files.

6/7/2012 OpenSFS TWG 2012 Requirements p. 11

POSIX extensions for scalable opens

The Linux kernel recently added support for “open by handle” system call. Wiring this feature

into Lustre would improve shared file (N:1) performance on large systems.

Other Requirements

These requirements do not properly fit into other categories, but remain important as Lustre and

the hardware it runs on continue to evolve.

Varying page-sizes

Lustre currently allows clients and servers to use different page sizes. It currently supports

same-sized or larger pages on the client as compared to the server, but future hardware may

challenge this expectation. Lustre should strive for flexibility in this area, and allow for

heterogeneous page sizes among concurrently connected clients and servers.

Mixed endian support

The two platforms with the largest share of the HPC market have different byte orders. In order

to extend the benefits of sharing storage between multiple systems to shops supporting both

platforms, Lustre must be able to interoperate seamlessly between clients and servers of

different byte orders. Incremental development and testing effort is needed to maintain this

cross-endian functionality. Long-term, Lustre should support servers on either byte ordering.

Improved security infrastructure

Lustre will need to support Public Key Infrastructure (PKI) to provide secure authenticated

access over WAN. Data Grids, such as Open Science Grid, TeraGrid (XSEDE) and others,

natively use PKI/X.509 rather than Kerberos for security and user authentication. They have an

established infrastructure and provide tools to manage certificates to user communities. Smaller

communities conveniently can use these tools or self-signed certificates. PKI/X.509 support can

be added following within the framework of the GSSAPI project at Indiana University.

Improved Lustre Tests

The Lustre tests included with each release need to be cleaned up. The following are areas

that should be addressed to create a more robust, usable set of tests: refactor unused tests,

ensure interoperability of tests between different Lustre versions, document requirements and

coverage of existing tests, client failure shouldn't stop the tests, and increased code coverage.

Improved Lustre internals documentation

Lustre internals and architecture documentation is important for the dissemination of Lustre

knowledge and encouraging more developers to contribute to the Lustre community. ORNL

published the first internals documentation in 2009 for Lustre 1.6

(http://wiki.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf). In addition,

Sun provided Lustre Internals Documentaion (LID) through the lustre.org wiki

(http://wiki.lustre.org/lid/index.html). Both of these documents are now out of date. We need

http://wiki.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf
http://wiki.lustre.org/lid/index.html

6/7/2012 OpenSFS TWG 2012 Requirements p. 12

updated, well-documented internals for all Lustre components (MDS, MGS, OSS, OST, OSD

API, etc.).

6/7/2012 OpenSFS TWG 2012 Requirements p. 13

Appendices

2011 Required Rates and Capacities

The following section was prepared in 2011 and is included here for reference only. The table

describes specific requirements for file system performance and scalability that the community

thinks Lustre will need to accommodate HPC systems in the near term (2012) and beyond

(2014). The table was not updated during the TWG’s 2012 requirements review.

Metric Lustre 2.11 Lustre 2.22 Q2 2012 Q1 2014

maximum
number of files
in file system

4 billion 4 billion 100 billion 1 trillion

maximum
number of files
in directory

10 million 10 million3 50 million 10 billion

maximum
number of
subdirectories

10 million 10 million 1 million 10 million

maximum
number of
clients

131072 128 thousand 64 thousand 128 thousand

maximum
number of OSS
nodes

- - 1 thousand 4 thousand

maximum
number of
OSTs

8150 8150 2 thousand 8 thousand

maximum OST
size

16 TB 128 TB 32 TB 128 TB

maximum file
system size

64 PB 1 EB 100 PB 256 PB

1source : Lustre 2.0 Manual, Table 5-1
2
 projected performance in 2011. This table has not been updated since 2.2 was released.

3The Lustre 2.2 ldiskfs code supports directories with over 10M entries, but as yet there is no

support for e2fsck of such directories, so this feature is currently disabled by default.

http://wiki.lustre.org/manual/LustreManual20_HTML/SettingUpLustreSystem.html#50438256_27068

6/7/2012 OpenSFS TWG 2012 Requirements p. 14

Metric Lustre 2.11 Lustre 2.22 Q2 2012 Q1 2014

maximum file
size

320 TB 64 PB 1 PB -

maximum
object size

2 TB 16 TB 16 TB 64 TB

peak
aggregate file
creates/s

20 thousand 40 thousand 200 thousand 400 thousand

peak directory
listings/s (ls -l,
4-stripe)

5 thousand 30 thousand - 100 thousand

maximum
single client
open files

~3 thousand4 100 thousand -

peak single
client file
creates/s

3 thousand 3 thousand 30 thousand -

4 ”Lustre does not impose a maximum for the number of open files, but the practical limit

depends on the amount of RAM on the MDS. No "tables" for open files exist on the MDS, as

they are only linked in a list to a given client's export. Each client process probably has a limit of

several thousands of open files which depends on the ulimit.”
4

6/7/2012 OpenSFS TWG 2012 Requirements p. 15

Requirements funded in 2011

The following requirements appeared in the 2011 document and have been removed from the

2012 version because community funded development contracts during 2011/2012 have

resulted in features that address the requirements. These new features began landing in Lustre

2.2 and will continue to appear through 2012 and 2013 with release of Lustre 2.3, 2.4 and 2.5.

See the community roadmap page for more information.

Performance Requirements

Metadata server performance

Interactive workloads (ls -l, du) do not perform as well with Lustre as they do on local file

systems. The MDS software architecture has not kept pace with the capabilities of current

multi-core hardware architectures. It is a requirement that the MDS be capable of using

efficiently all of the compute resources available on commodity server platforms.

Metadata server scalability

The single metadata server is Lustre's greatest architectural liability. The file system provides

horizontal scalability of the data store across multiple object storage servers, but the metadata

services are still limited to a single metadata server. Lustre performance and capacity can be

improved by enabling horizontal scale-out of the MDS, allowing the file system namespace to be

distributed. Maximal performance will result when directories themselves can be distributed

across multiple MDS hosts.

Foundational Requirements

Support for alternate backend file systems

Ldiskfs is at the limits of its useful life. Selection of an alternate backend store is impossible

unless Lustre supports interchangeable backend file systems. Lustre engineers had started a

project to create a backend abstraction for arbitrary Object Storage Devices (OSDs). This effort

was not completed. There remains considerable code reorganization to facilitate interoperability

with different backend devices whether through OSD or some other interface.

Manageability and Administrative Requirements

File system consistency checks

Compute centers can ill-afford the downtime required to ensure the consistency of Lustre or its

backing file systems. There must be online integrity check and repair processes that can

continually run in the background to verify the consistency of both file systems. These

processes must identify and repair various inconsistencies including, but not limited to,

orphaned and missing data objects. The processes should have low impact on normal

operations of the file system.

http://wiki.whamcloud.com/display/PUB/Community+Lustre+Roadmap

6/7/2012 OpenSFS TWG 2012 Requirements p. 16

User Identity Mapping

As Lustre use expands over the WAN into environments that have differing models of user

management, there is a growing need to map identities from one management domain to

another, on a per-NID basis. This mapping must be performed in such a manner that continued

operation of Lustre's quota system is achieved.

6/7/2012 OpenSFS TWG 2012 Requirements p. 17

2011 Deprecated Requirements

The following requirements appeared in the TWG’s 2011 Requirements document, but have

been removed from the 2012 document because they were either merged with other

requirements or had been deemed unnecessary.

Merged features

The following two items were merged into new requirements for the storage management

section of the current document.

Balancing storage use

Currently, ensuring a balanced use of the storage space available to Lustre relies on a

haphazard set of setting default striping, storage pools, and manual rebalancing of overfull

OSTs. As a mid-term goal, Lustre must be able to allow automatic emptying of an OST,

migrating the data to other devices in the filesystem. Similarly, Lustre must be able to rebalance

the storage load over new OSTs as they are added. Additionally, Lustre must be able to require

authorization for use of specific storage pools.

Adaptive storage layout

Users are often confused by the relationship between maximum file size and object count. In

addition, they often make poor striping choices, causing massive imbalances in OST use. Lustre

should have the ability to adapt the storage layout of the file as it grows and/or ages, such as

adding more objects as needed. This adaptive layout should be able to be set as the default

striping pattern by administrators, but must not preclude knowledgeable users from continuing

to set a specific layout. Additionally, users must be able to specify the exact layout of the file if

so desired, to include specific OSTs and their order in the striping.

Deleted features

The following were deleted from the current list of requirements. Whamcloud and ORNL

reported on using btrfs as a Lustre backend at LUG’11. Their conclusion was that the btrfs file

system is not appropriate at this time for Lustre storage. In addition, Lustre clients can already

restrict access to specific OSTs. The real issue is flushing client cache before server shutdown,

which is addressed by a new requirement this year.

Backend storage investigation

To accommodate the capacities above, the backend store must expand beyond current ldiskfs

limits (eg 128TB LUN sizes). We seek backend solutions that improve Lustre reliability and

resiliency. LLNL is pursuing ZFS as an ldiskfs replacement. Btrfs has many features in

common with ZFS. It is of interest because it is licensed under the GPL and included with

Linux.

Assuming that Lustre can be restructured to accommodate alternate backend stores, we need

to investigate alternative file systems to understand their architecture, layering, stability, and

6/7/2012 OpenSFS TWG 2012 Requirements p. 18

performance. These baseline investigations should be completed _before_ there any attempts

to implement an OSD interface for the file system.

Allowing for controlled partial-system maintenance

Currently, to upgrade a Lustre installation or perform maintenance on a subset of the comprising

hardware, one must unmount the filesystem from all clients or risk hanging processes until the

hardware is back online (maintenance) or other odd, undefined client behavior once the

upgrade completes. To allow more flexible administration, the file system must be able to

handle these situations gracefully, and allow the clients to avoid attempting to use hardware

known to be down.

6/7/2012 OpenSFS TWG 2012 Requirements p. 19

New Requirements for 2012

The following is a brief list of new requirements gathered during our meetings in 2012.

Requirement Category Feature

Availability ● Scalable fault management

● Avoid RPC timeouts

Storage Pool Management ● HSM and storage management infrastructure

● OST migration/rebalancing

● Asynchronous file mirroring

● Complex file layouts

● Dynamic layout for subset of a file

● Storage pool quotas

● Unified storage target

Performance ● Single client I/O performance

● File create performance

● Directory traversal and attribute retrieval

● Single file performance

● Small & medium I/O performance

LNET ● LNET Channel Bonding

● Improved LNET robustness

● Dynamic LNET configuration

● IPv6

Manageability and
Administrative

● Administrative shutdown

● Improved configuration robustness

Application Interface ● POSIX extensions for file sets

● POSIX extensions for scalable opens

Other ● Improved security infrastructure

● Improved Lustre Tests

● Improved Lustre internals documentation

6/7/2012 OpenSFS TWG 2012 Requirements p. 20

Change Log

date initials notes

4/11/2012 jc initial draft integrating 2012 notes into 2011 template

4/11/2012 aed add limits for 2.2 filesystems

4/19/2012 twg group edit of document during TWG concall

5/3/2012 twg add 2 new metadata performance requirements

5/30/2012 jc add recommendation text

5/31/2012 twg final draft following group review

6/7/2012 jc board feedback: match order of gathered requirements to table

