

A Renewed Focus on Lustre
Software Structural Quality

By Christopher Morrone
OpenSFS CDWG Lead

August 5, 2014

Software Quality

● Two related but distinct aspects

– Functional quality (feature works or
doesn't)

– Structural quality (robustness,
maintainability, etc.)

Lehman's Laws

● Observations describing a set of behaviors

● Law 8 - “...evolution processes constitute multi-level,
multi-loop, multi-agent feedback systems and must be
treated as such to achieve significant improvement over
any reasonable base”

● New features create positive (destabilizing) feedback

● “Lehman demonstrated that systems continue to evolve
over time. As they evolve, they grow more complex
unless some action such as code refactoring is taken to
reduce the complexity” - http://en.wikipedia.org/wiki/Software_maintenance

http://en.wikipedia.org/wiki/Lehman's_laws_of_software_evolution

http://en.wikipedia.org/wiki/Software_maintenance

Need a Lustre Culture Shift

“...we have come to value: Not only working
software, but also well-crafted software”

Manifesto for Software Craftmanship
http://manifesto.softwarecraftsmanship.org/

“A quality culture is an organizational
environment where quality is viewed as

everyone's responsibility”

http://en.wikipedia.org/wiki/Software_quality_management

How OpenSFS Can
Change the Lustre Software Culture

● Socialize the new software structural quality expectations
through presentations at LUG, LAD, SC, Lustre
developer meetings, etc.

● Apply a renewed focus on code quality in all aspects of
the Lustre software lifecycle in the Lustre Working
Group's* activities

● Leverage the existing “Tree” contract to influence positive
cultural changes in core development team

● Bootstrap quality into current Lustre code base
through financial incentives (targeted contract work)

Software Quality is a Process,
Not a Destination

● Easier to keep code high quality if it starts off high quality

“Oh, sure, this new code is ugly, but so is the surrounding code
and we really need to get this bug fixed/meet this deadline.”

● Bootstrap quality software process by raising quality
standards in existing 420,000 SLOC (lang:C) in Lustre

More Bootstrapping Quality, Fewer Features

● Contract to document Lustre network protocol (ptlrpc layer
and up)

● Series of code refactoring contracts addressing targeted
low quality sections of code

How do we know it is working?

Classic Code Quality Metrics

● Cyclomatic complexity/McCabe measure (1976)

● Halstead complexity measures (1977), volume, difficulty,
effort, time required to program, number of delivered bugs

● Coupling and cohesion (Larry Constantine, 1960)

● SLOC

● Bugs per SLOC

● Comment Density

But Are They What We Want?

“You can't control what you can't measure.”

● “The book for me is a curious combination of generally
true things written on every page but combined into an
overall message that's wrong. It's as though the book's
young author had never met a metric he didn't like. The
book's deep message seems to be, metrics are good,
more would be better, and most would be best. Today
we all understand that software metrics cost money
and time and must be used with careful moderation.”
- Tom DeMarco, 2009

“Controlling Software Projects:”, Tom DeMarco, 1987

The Dilemma

● Quality is subjective

● Metrics are costly

● Simplistic metrics cause more harm than good

The Solution

● Define targeted metrics as needs are identified

● Improve peer review process to ensure quality

The Plan: Part 1

● Grant contract to document all Lustre protocols from the
ptrlrpc layer up.

● OpenSFS creates a repository and web site to how the
protocol documents.

● Institute peer review system for protocol changes.

● No protocol changes permitted to land in tree until
protocol documentation change submitted, peer
reviewed, and ratified.

Lustre Protocol Documentation Contract
Deliverables

● Complete set of documentation in form appropriate for
storage in git repository, and presentation in other forms
(web, pdf, etc.)

● A list of files and individual functions needing refactoring,
as encountered while reading the code in order to write
accurate protocol documents.

The Plan: Part 2

● Grant multiple contracts to refactor specifically identified
areas of the code.

● The Lustre Protocol Documentation Contract will be one
source of potential areas for refactoring.

● Further refactoring targets identified by Lustre Working
Group

The Plan: Part 3

● Continue to evaluate and improve all areas of the Lustre
software development lifecycle (requirements, design,
implementation, testing, etc.)

● Remember: We are bootstrapping the quality of the
existing code base, but software quality is a continuing
endeavor.

What We Need From the Board

● Approval to begin development and negotiations of the
Lustre Protocol Documentation contract.

● Optional (could start later): Approval to begin
development and negotiations of the first Code
Refactoring contract.

Final Quote

“...control is ultimately illusory on software development
projects. If you want to move your project forward, the only

reliable way to do that is to cultivate a deep sense of
software craftsmanship and professionalism aroudn it”

- Jeff Atwood

