SCOPE OF WORK

Project 1. Layout Enhancement Design
Technical Description and Approach

Lustre file layouts represent how file data is distributed over OSTs. Only simple RAIDO (striping)
layouts are supported today, and enhancements are required to implement future features such as Data
on MDS, Data Replication, live Data Migration, and RAID1/5/6 or erasure coding. The Layout
Enhancement (LE) project is therefore a prerequisite for the Data on MDS and Replication projects
proposed here. LE was separated from these subsequent projects in order to ensure the design not only
satisfies requirements for these two efforts, but also anticipates future developments. Design goals are
listed below.

* Extend the Lustre layout to include the following formats:

0 N-way stripe replication. This is a requirement for the Data Replication project. It
generalizes RAIDO+1 to allow multiple replicas of the data in a Lustre file. This will
ensure that data can remain available in the face of multiple OST failures - e.g. multiple
short- or long-term OST failures.

0 RAID5/6 and erasure codes. These anticipate future developments to enable more space-
efficient replication techniques.

o0 Layout extents. This allows different layouts in different extents of a Lustre file. It can be
used to enable wider striping as files grow in size, to prevent inconsistent ENOSPACE
errors as individual OSTs become full, and to enable incremental migration, replication,
and HSM restore.

* Determine additional requirements for algorithmic layouts — e.g. CRUSH.

e Extend the layout locking protocol to ensure layout changes can be effected while a file is
actively being accessed. Also, determine client-side changes required to allow layout changes to
be requested within the I/O stack. These are required for the Data on MDS project to migrate
small files off the MDS when they grow larger, and needed by the Replication project to enable
layout changes in response to OST availability. They will enable future features such as

incremental HSM restore and live OST rebalancing.
* Determine a new protocol strategy for handling large layout representations. The current strategy

can result in grossly inefficient network buffer utilization for extremely large layouts and

assumes layouts are always transferred in their entirety.
* Compatibility and version interoperation. The design work must address requirements to support
rolling upgrades.

11



Project 2. CLIO Simplification Design
Technical Description and Approach

The Lustre client implementation for the 10 path (called CLIO) is responsible for issuing RPC
commands for reading and writing data to the OSTs. CLIO was reconstructed in Lustre 2.0 for cross-
platform portability. The implementation is too complex for the current usage, thus making the code
hard to understand and maintain. Moreover, from the performance benchmarks, the IO performance of
2.x clients is significantly lower than 1.8 clients.

These major efforts will be made for this project:

1. Simplify the implementation of cl_lock by implementing a cache-less lock. This will affect
the whole 10 stack regarding lock requesting, lock management, and page cache. After this is
done, cl_lock should become much easier to understand and maintain.

2. Deprecate liblustre support which has been unused for several years and was only kept in
Lustre as an example of a non-Linux IO architecture.

3. Remove the stub Mac OSX and Windows client support. Once complete, the CCC layer
would disappear and the Lustre client should be more compatible with the Linux kernel VM
and VFS APIs.

4. Further simplify the 10 stack by removing the vvp and lovsub layers. These layers were
added for platform portability. However, since functional ports to new OSs is unlikely at this
point, we propose to remove these layers to simplify the overall IO stack. This will simplify
the code and increase the likelihood of Lustre client inclusion into the Linux kernel.

5. Realize performance improvements resulting from code simplification and abstraction
removal.

6. Optimize the use of file ioctl() calls. For example, have LL._IOC_DATA_VERSION use
CLIO interfaces and remove access to log_stripe_md at the llite layer.

7. Remove obsolete OBD callbacks such as obd_brw(), obd_punch(), etc.

8. Explore whether VFS reads and writes can be optimized at the expense of mmap
performance.

Project 3. Removal of Dead Code in Lustre (Implementation)
Technical Description and Approach

Ongoing restructuring of the Lustre source code has created large swaths of unreachable code and
unused data. At the same time, the layering and complexity of Lustre makes this dead code and data
difficult to identify during restructuring, adding unnecessary complexity to ongoing development and
maintenance. We propose a concerted effort to address this issue.

This project will identify and remove code from the Lustre codebase which is no longer being used. This
will be achieved by using static code analysis tools to isolate areas of dead code. Engineers will then

22



hold inspections to understand why the code is dead and on how to best remove the code with minimal
impact to other on-going projects.

Some areas that will be targeted:
* OBD methods and handlers
* /proc files and structures
* libcfs module APIs
» Utilities
» liblustre

The initial rough estimation is that over 15,000 lines of code could be removed from the Lustre codebase
as a result of this effort.

Project 4. Code Documentation (Implementation)
Technical Description and Approach

Many subsystems of the Lustre code do not have sufficient internal documentation (code comments) to
describe the implementation sufficiently, and some of the comments are out of date. In order to facilitate
developer understanding of the code; and in turn improve their ability to enhance and fix code in a
robust manner, a project will be undertaken to add and improve Doxygen-formatted comments within
select subsystems. Code commenting best practices will be added/updated to the Lustre Coding
Guidelines wiki page.

Comments added to each file will include an introductory comment block describing the high-level
functionality (at least two or three paragraphs) in the updated subsystem. A comment block describing
each function will be added to all functions more than a few lines in length, including input/output
arguments, locking requirements, code caveats and complexities. Additional comments will be added
inline with the code as necessary.

The Lustre subsystems to be commented in Phase 1 of this project will be lustre/lod, lustre/osp, and
lustre/ofd. These subsystems were chosen because while they have had significant rework recently,
there were large parts of the code copied from old Lustre code (lov, osc, and obdfilter respectively) that
were lacking in clear documentation. This project will prove beneficial from the review of the existing
comments, as well as benefit others that are not familiar with the significant changes that this code has
undergone.

Project 5. Data on MDS Design
Technical Description and Approach

Lustre performance is currently optimized for large files. This results in additional RPC round-trips to
the OSTs, which hurt small file performance. This project aims to correct this deficiency by allowing

33



the data for small files to be placed on the MDS so that these additional RPCs can be eliminated and
performance correspondingly improved. Used in conjunction with DNE, this will preserve efficiency
without sacrificing horizontal scale.

System administrators will set a layout policy that determines a minimum file size below which files
will be contained entirely on the MDS. Files that grow beyond this size will be migrated onto OSTs.
The layout policy can be generalized to include further size breakpoints with different default layouts.
This will allow progressively wider striping as files continue to grow, using the same underlying
restriping mechanisms developed to migrate small files off the MDS. Design goals are listed below.

e Unified target. Unified request handling for OSTs and MDTs is required to allow data operations
through the MDT to the underlying OSD.

e Client I/O. Inclusion of the MDC as part of the client-side I/O stack.

* Dynamic data migration. Moving file data from the MDT onto OSTs while I/O is active.

* Dynamic stripe allocation. Allocating new OST objects on demand while I/O is active.

* Administration. Generalization of existing default layout policy to specify restriping at different file
sizes.

Project 6. Replication Design
Technical Description and Approach

Lustre availability and resilience relies entirely on the availability and resilience of its backend storage
devices. Replication mitigates this dependency by specifying a mirroring file layout for data across
multiple OSTs so that data remains available in the event of device failure. Data integrity can be
checked and repaired by comparing mirrors.

The design will anticipate a phased implementation. In the first phase, replica OST object generation
will be performed on otherwise idle files by a generic userspace replication utility. This will be used
both to turn a non-replicated file into a replicated file and to restore the required level of replication to
files stored on OSTs that have failed or otherwise become unavailable. In this phase, replicas of
overwritten OST objects will be discarded. Immutable files will therefore retain resilience after initial
replica generation. Append-only files will retain resilience until appended extents are updated by the
replication utility. However, replication for overwritten files will have to be regenerated completely. In
the second phase, replica OST objects will be maintained synchronously. This will allow replication
immediately on file creation and replication to be preserved on overwrites.

Replica OST object allocation algorithms will be developed to guarantee fault isolation between replicas
and load balance replica generation over all available OSTs. This will ensure single hardware and
software failures cannot affect multiple replicas and that repair speed after such a failure scales with
aggregate OST bandwidth. Replication will be selectable on a per-file basis, and described by new

44



layout formats designed in the LE project. Existing default layout policy will be able to use these to
control the level of replication. Design goals are listed below.

» Parallel replication utility. This will set or restore the requested level of replication on a set of Lustre
files by allocating and initializing new replica OST objects and performing a layout switch to include
them in the original file layout when required, or bringing replicas in appended extents up to date on
append-only files. The phase 1 design will perform this on idle files and abandon or restart
replication if the file is overwritten. The phase 2 design will perform replication repairs on files that
are actively being written.

* Replica de-clustering and fault isolation. Configuration metadata will be added to assign OSTs to
fault domains so that replica allocation can avoid single points of failure. Replica allocation will
also ensure replicas are dispersed over all available OSTs to ensure replica regeneration on OST
failure can proceed at full system bandwidth.

* C(Client I/O stack. The client I/O stack will be altered in the phase 1 design to discard replicas on
overwrite, maintain the replication extent within append-only files and to read from replicas when
primary OSTs are disabled, RPCs to the primary OST return failure; or to verify data integrity on
request. In phase 2 the client I/O stack will be altered to clone writes across all replicas and to
handle write failures appropriately.

* Administration. Existing default stripe administration methods will be extended to handle
replication. A utility that implements a simple delayed replication policy triggered by the file system
ChangeL.og will be included to perform delayed replication for the phase 1 design. An OST repair
utility will scan the file system namespace for files that included OST objects on a failed OST and
invoke the parallel replication utility to repair them.

55



