
Final Report for the 
Performance Subproject of the Lustre File System 
Checker of the 
SFS-DEV-001 Contract

Revision History

Date Revision Author

03/16/16 Draft R. Henwood



Executive Summary
This document finalizes the activities undertaken during the Lustre* File System Checker, 

Sub Project 3.4: Performance project within the OpenSFS Lustre Development contract SFS-

DEV-001 signed July 30th 2011 and the subsequent modification signed October 10th 

2012.

Notable highlights of this project include:

 Delivered LFSCK performance improvements between 40% and 195% depending on 

the configuration.

 Performance met or exceeded exceptions running in multiple MDT environments.

 All assets generated for OpenSFS during the project are attached to the OpenSFS 

wiki: http://wiki.opensfs.org/Contract_SFS-DEV-001

Statement of Work
This subproject ensures that LFSCK is ready to be used in production environments. It will 

characterize and optimize the performance of the features implemented in Subprojects 3.1-

3.3, ensure that the performance impact of background scrubbing is sufficiently controlled, 

and determine whether Lustre protocol modifications (e.g. support for aggregate RPCs) are 

required. Administrative controls and monitoring will be finalized and documentation and 

procedures will be provided for system admin

The complete scope statement was agreed on 2014-10-12 and is available at:

http://wiki.opensfs.org/images/3/32/LFSCK_Performance_ScopeStatement.pdf

Summary of Solution Architecture
After successfully completing all previous components of the LFSCK project, Lustre file 

systems now have a complete solution for checking file consistency. LFSCK can now scale 

by running in parallel and supports DNE file systems. In addition, the success of the LFSCK 

development work now means file level backups are available as an additional option for 

*Other names and brands maybe the property of others.

http://wiki.opensfs.org/images/3/32/LFSCK_Performance_ScopeStatement.pdf
http://wiki.opensfs.org/Contract_SFS-DEV-001


system administrators. All of the new features have been documented with man pages and 

entries in the Operations Manual. 

This final component of the LFSCK project is primarily concerned with LFSCK performance. 

During the development of LFSCK, a small number of performance enhancements were 

identified but were out of scope for the given contract phase. These optimizations were 

collected and this phase of the work is concerned with implementing them. 

Acceptance Criteria
Four independent development tasks will be created to achieve each of the use cases. 

These tasks will be executed in accordance with the published development guidelines and 

with peer review and automated testing. In addition, a performance measurement will be 

made on the completed implementation. 

1. A filesystem has a large number of unused inodes in the ldiskfs file 
system.

For ldiskfs-based backend, the OI scrub currently scans the local device linearly. It iterates 

all the inodes on the ldiskfs partition in the inode tables in each block group without 

distinguishing whether the block group that contains the inode table has been initialised or 

not. In practice, to speed up the mke2fs and local e2fsck, the ldiskfs supports "uninit_bg" 

feature that allows to create the backend-filesystem without initializing all of the block 

groups. This dramatically reduces e2fsck time. 

So for iteration, LFSCK (including backend OI scrub) should also make use of such feature to 

skip uninitialised block groups to optimise the scanning. 

2. An administrator wants to avoid unnecessary scanning.

Generally, scanning the whole device for OI scrub routine check may take a long time. If the 

whole system only contains a few bad OI mappings, then it is not prudent to trigger OI scrub

automatically with full speed when bad OI mapping is auto-detected. Instead, We should 

make the OI scrub to fix the found bad OI mappings only, and if more and more bad OI 

mappings are found that exceeds some given threshold, the OI scrub will run with full speed

to scan whole device. The threshold of bad OI mappings that will trigger a complete scan 

can be adjusted via a proc interface. 



3. An user wants to access to files during LFSCK scanning.

Currently, when LFSCK repairs an inconsistency, it needs to take related ldlm lock(s). In the 

first instance, this lock prevents concurrent modifications or purge client side cache. To 

simplify the implementation, the LFSCK just simply acquires LCK_EX mode ibits lock(s) on 

related objects. For example, when insert a name entry into the namespace, it will take 

LCK_EX ibits lock on the parent directory, then it will prevent all others to access such 

directory until related repairing has been done. 

Generally, if there is very little inconsistency in the system, then such lock policy is 

satisfactory. However, if the inconsistency cases are more common then this lock policy is 

inefficient. We need to consider more suitable ldlm lock mechanism, like MDT PDO lock to 

allow more concurrent modifications under the shard directory. 

4. An administrator wants LFSCK to find inconsistencies as quickly as 
possible.

For the task to provide performance optimization using available memory, a first step is to 

measure how much performance impact writing entries to lfsck_namespace actually 

has. There is no benefit to implementing this change if it is not going to improve 

performance. The performance impact of writing entries to lfsck_namespace will be 

evaluated by running LFSCK on a file system with some percentage of hard links (say 1%, 

5%, 10%, 25%, 50%) either with the current code having lfsck_namespace written to a 

file on disk, or a hack mode where it is recorded on in memory (e.g. linked list or similar). If 

there is no significant difference in the performance there is no reason to implement this 

change. If the performance improvement is significant then an implementation that has 

inodes only written to lfsck_namespace when they are pushed form RAM will be 

evaluated. 

5. An administrator needs to know what options are available, and what 
they do.

Review the whole of the LFSCK documentation in the manual to ensure it is fit for purpose. 

The complete Solution Architecture including Acceptance Criteria was agreed on 2014-12-

04 and is available at:

http://wiki.opensfs.org/images/3/3c/LFSCK_Performance_SolutionArchitecture.pdf

http://wiki.opensfs.org/images/3/3c/LFSCK_Performance_SolutionArchitecture.pdf


Summary of Implementation
LFSCK 4: Performance is implemented in the following patches:

Change # Subject

12737 LU-1452 scrub: OI scrub skips uninitialized groups

12738 LU-1453 scrub: auto trigger OI scrub more flexible

12958 LU-1453 scrub: NOT miss to auto detect inconsistent OI mapping

12766 LU-5682 lfsck: optimize ldlm lock used by LFSCK

LU-5820 evaluation: linkEA verification history in RAM performance*

12966 LUDOC-259 lfsck: review and update LFSCK documentation

14014 LU-6177 lfsck: calculate the phase2 time correctly

14008 LU-6350 lfsck: lock object based on prediction for bad linkEA

14009 LU-6351 lfsck: check object existence before using it

13993 LU-6343 lfsck: locate object only when necessary

13948 LU-6322 lfsck: show start/complete time directly

13933 LU-6317 lfsck: NOT count the objects repeatedly

13923 LU-6316 lfsck: skip dot name entry

The complete Implementation milestone was agreed on 2014-12-23 and is available at:

http://wiki.opensfs.org/images/c/c7/LFSCK_Performance_Implementation.pdf

Summary of Demonstration
Between LFSCK 3 and LFSCK 4, performance increases of 40% and 195% were realized, 

depending on the configuration.

Complete results were agreed on 2015-05-18 and are available at:

http://wiki.opensfs.org/images/3/3b/LFSCK_Performance_Demonstration.pdf

http://wiki.opensfs.org/images/3/3b/LFSCK_Performance_Demonstration.pdf
http://wiki.opensfs.org/images/c/c7/LFSCK_Performance_Implementation.pdf
http://review.whamcloud.com/13923
http://review.whamcloud.com/13933
http://review.whamcloud.com/13948
http://review.whamcloud.com/13993
http://review.whamcloud.com/14009
http://review.whamcloud.com/14008
http://review.whamcloud.com/14014
https://jira.hpdd.intel.com/browse/LUDOC-259
http://review.whamcloud.com/12966
https://jira.hpdd.intel.com/browse/LU-5820
https://jira.hpdd.intel.com/browse/LU-5682
http://review.whamcloud.com/12766
https://jira.hpdd.intel.com/browse/LU-1453
http://review.whamcloud.com/12958
https://jira.hpdd.intel.com/browse/LU-1453
http://review.whamcloud.com/12738
https://jira.hpdd.intel.com/browse/LU-1452
http://review.whamcloud.com/12737

