Design Document
For
Shared Key Authentication and Encryption
in Lustre 2.x

Scope Statement

Revision History

Date Revision Author

2012-07-22 [Created ajk

Table of Contents

L 00 X L) o 0) o R

20 LT =Y 10T L
YT 1D L2
107 (06 L D .
00 R 0 T o (.
Reuse Of CryptoBraphy COUEummiinississsssssssssssssssssss st sss s ss s e s s s s s s s s sb s s s sn s e
Ease Of KEY MaANAZEIMENLcocuiuiurirsmsnssisssstssssssssssssssssssssssassssssssssssssssss s st sas st sh sas s e b sm s s e A AR AR A A SRR RS R R AR AR e RS

D L] 01T L0 0D L
U4 U 1L 7
(000 41§00) 000 T 1
I 1 o T
)L 04 0 2
1 g 073 (0,
3G 0 11T Ui ¥ 11 L) 1
L0 1D L 20 i U= L 1)
shared-Key authentiCation ... s sn s

Changes from Solution ArchiteCtUre....... i —————————————

Functional SPecCifiCation ...
Null GSSAPI MECRANISIN ... s s s s s s s e e
Shared Key NUll SECUTILY FIaVOTr....iiisisssissssssssssssssssssssssssssssss s sssnsssss
Shared Key GSSAPI M@ChaANISI ... ssisssissssssssssssssssssssssssssss s s s s s sssss s ssssssssssssssssssssssssasssss
Shared Key SeCUTItY FIAVOTS ...oiirnississssisssissssisssssssssssssssssssssss s ss s st s s s sssss s ssssssssssssssssssssssasssss
Userspace Key Management TOOIS. ... ssssss s sssnsssss

LT 08 1]
Y3 1 LT D 1
Strong Cryptography Without Kerberos ... sssiss
GSSAPI UNIE TESTINEG cuceiinruisnssismssssmssssmssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssesss e ssshssssesas st sae e sae eSS E RS S E AR e AR R R R R AR R RS

I Col] 0 =00 o 1 () o
Configurable PaArameEters....... AR AR
API and Protocol CRanges.......ccuiiimimmmmsssnssssssssssssssssssssssssssssssssssss s ssssssssssssssssssssssssssssssssssssasssses
100723 1T T 1 LT

RISKS QN0 UNKIIOWILS ..coiiiieiiissiiissssisssssessssssssssssssssssssssssessssssssssssssssss sasssssssssssssssssssssss sassnsssssnsssssanssssansssssnsnnssnns

Shared Key Authentication and Encryption Design Document

Introduction

The Lustre filesystem currently supports Kerberos authentication to protect file
data and metadata from network eavesdropping and tampering. While Kerberos is
an excellent authentication protocol, it requires some infrastructure at the client
end that is not trivial to deploy nor always permissible by site policy.

A coexisting shared-key, host-based authentication system would preserve the
authenticity, integrity, and confidentiality of file data and metadata but without
requiring any additional infrastructure on the client side. In such a system, a
single key would be generated for each client host, and that key would be installed
on both the client and the server.

Lustre’s Kerberos support is provided through the Generic Security Services
Application Program Interface (GSSAPI), a modular interface for providing
authentication and encryption mechanisms. By implementing a shared-key
system as a GSSAPI mechanism, Lustre’s Kerberos functionality can be left
untouched, and no new authentication and encryption code needs to be added.

Definitions

authenticity

the assurance, when communicating with another party, that that party is
who it claims to be (not an impostor)

confidentiality

the assurance that data will not be disclosed between sender and receiver
(e.g., protection against eavesdropping)

GSSAPI

Generic Security Services Application Program Interface, a modular interface
for providing authentication and encryption mechanisms

integrity
the assurance that data will not be modified between sender and receiver

Kerberos
a network authentication protocol

key management

a system that allows creation of authentication/encryption secrets (keys)
and making them available to a service such as Lustre

Shared Key Authentication and Encryption Design Document

security flavor

Lustre construct that allows a user to choose the level of security desired
(e.g., authentication alone, authentication plus encryption)

shared-key authentication

an authentication method using a single secret password or key stored on
both the client and the server

Changes from Solution Architecture
None.

Functional specification

Shared Key Null Security Flavor

Implement a null mechanism security flavor (sknull) within Lustre 2.X to
provide a method for testing. The sknull flavor will use the null GSSAPI
mechanism, also included in this design.

Null GSSAPI Mechanism

Implement a null mechanism for GSSAPI. A null mechanism not only
provides easy testing but also illustrates the critical path through the
GSSAPI model and provides a baseline for performance testing of other
security mechanisms.

The null mechanism will use no cryptography for authentication or
encryption. It is intended for testing only.

Shared Key Security Flavors for Data Integrity and Privacy

Implement shared-key integrity (ski) and privacy (skpi) security flavors for
Lustre 2.X. Keys will be pulled from a secure module such as the Linux
kernel keyring. Keys are per-cluster; a given key may only be used on the
cluster with the clusterid for which the key was issued. This restriction will
be implemented by using the hash of the clusterid as part of the
authentication process; hence, if a key is moved to a different cluster with a
different clusterid, authentication will fail. These flavors will use the shared
key GSSAPI mechanism, also included in this design.

Shared Key GSSAPI Mechanism

Implement a shared-key GSSAPI mechanism for preserving data integrity
and privacy. This phase should use the existing kernel crypto modules to
allow for a shared key, known to both the Lustre 2.X servers and the Lustre
2.X clients, to generate a hash-based message authentication code (HMACQ),
the equivalent of a digital signature, for each message passed between the

Shared Key Authentication and Encryption Design Document

server and the client. The mechanism will also optionally encrypt these
messages using the shared key and a symmetric cipher.

Generating an HMAC requires a cryptographic hash function. The hash
algorithm will be specifiable at run time to the extent permitted by the Linux
crypto API, defaulting to SHA-256.

When symmetric encryption is used (skpi), the default cipher will be the
integer counter mode (CTR) of the Advanced Encryption Standard (AES).
CTR was chosen because it doesn’t require padding. The Linux crypto API
allows other AES modes and other ciphers, but since the initial release of
this GSSAPI mechanism may not support padding, some of those modes and
ciphers may not be usable.

Userspace Key Management Tools

Implement userspace tools to create shared keys, and methods to make the
keys available to Lustre without exposing them. The utilities to create the
keys should be implemented in userspace. The tools to push the keys into a
secure memory module for accessibility to the Lustre modules should be
incorporated into /ct/.

Logic specification
To be done.

Configurable parameters

The following aspects of functionality will be configurable:

e shared key security flavor: none (sknull, for testing only), data integrity only
(ski), data integrity and privacy (skpi)

e HMAC hash function (defaults to SHA-256)

e symmetric cipher (defaults to AES-CTR)

API and Protocol Changes

None known.

Open issues
None known.

Risks and Unknowns

Historically, the GSSAPI has served mainly as a way to provide Kerberos support
without locking it in as the only possibility for authentication and encryption. For
that reason, not many non-Kerberos mechanisms exist. But because the shared
key approach is simpler than Kerberos, we don't anticipate encountering any gaps
in GSSAPI.

