Demonstration Milestone Completion for the
Striped Directories subproject of the
Distributed Namespace Project of the
SFS-DEV-001 contract.

Revision History
Date Revision Author

2015-07-01 Draft R. Henwoo d

2015-08-06 1.0 J. Popp

Table of Contents

TADIE OF CONTENTS ..ttt ettt et ettt e e ettt e s it e e b bt e e sa bt e e s hte e e sabe e e sabeeeambeeesabeeesabeeesabeeesabeeesabeeesanens 2
T A oY [V 4T] o HA OO T T T T PSPPSR UPPOTP 3
Y] o] oY foT=Torfl 1T ol 4T o) o] o F U PURURRN 3
VI IE oY o T @oT 0 o o] (=] o] o W@ o) (=Y o - U SSUURRRt 3
FUNCHIONGAL TOST ...ttt ettt et e ettt e st e e sa bt e e sab e e e sabe e e sa b e e e sabeeeaabeeesabeeesabeeesabeeesabeeesabeeesanees 4
Basic FUNCLIONAl REGIESSION TESTING ..uvvviiiiiieiieiiiccciiiteiee e e e e e e ettt e e e e e e e e e sttt tbeeeeeaaeaeesesassstsssaeseaaaeesanannnsrnnns 4

Ny u gl oo W I T =Tor o] 4 VA O LY | dTo] o U U P USRPRRRS 4

(=T = d =T o] o I =) AP PPPPPTR 4
sanity.sh: Tests to verify operation under normal operating conditionsccccceeeeiiiiiiiiiiiiieeec e 4
sanityn.sh: Tests to verify operations from two clients under normal operating conditions 7
conf-sanity.sh: Tests to verify configuration is working correctly.ccccomiiiiieiiei s 8
recovery-small.sh: Tests to verify RPC replay after communications failure (message 10ss)cccccvvvveeeeeen. 8
replay-single.sh: Tests to verify recovery after MDS failure..........cooccciiiiiiiiiic e 8
01T = - To [T (=T S PURUURRE 10
DL = UL R T oY=l oo 0] o] (=) S PURPURRE 10

Y TN A (g o oo 10] o) o =T ST PPPPPR 11

[V T={eTaloT gl doTo MULY-T-{<No Lo Tol¥] o 1= ol -} 4 (o] o WANuuu U UURUURRE 12

Y =g T =l N <o o] VAR o < U PURUURRE 12
UPErade With MIGIate .. .uuueeeei i ittt et e e e e e e e e et et e e e e e eaeeeesesaaasearsasaaeaaaaeeesaassstsssaeseaaaasesannnns 13
Migrating directory With failed IMDTceeii i e e e e e e e et rrereeeaaeaeeeeseatssbrsaaeeeaaaeeesaannnns 13
Access the directory dUring MigratioNooc i e e e e e e e e e e se bbb aaeeeeeaeeesesesnsrsaaeees 13
Failover and RECOVEIY SO@K TOSTING....uuuuiiiieiieeieiiiiiiiiiie et e e e eeeecectrrr e e e e e e e e e e e e esttabreeeeeaaeaeeeesanssstsssaseeaaaeessannnns 15
(000 g] T L] o1 L1 VA IC=T] AU SRR 16
2.5/2.7 Client with 2.7+ patches DNE ASYNC COMMIt SEIVETccocviiieiieiiiee ettt e e ettt etree e e e e etree e e e eetaeea e 16
2.7 + patches DNE Async Commit Client With 2.5/2.7 SEIVEIcccuviiii ittt 16

P TOIMANCE TOST . ttieiiiie ittt ettt ettt e bt e s b e e e s bt e e bt e e s bt e e s bbeesabeeesabbeeeabeeesabbeeaabeeesabbeesbbeesabeeesnreeeanee 17
1Y o] 01T o 1ol YU URUUU 20
Appendix A: Optional Test: Stress testing With racer . Shu e 20
Appendix B: Simulated Wide STIPINGccoei ittt e et e e e e e e e e e e s e eaabbbaaeeeeeaeeeseennnsssnaeens 21
Appendix C: Performance results FaW dataccuvvveeeieee it e e e e e e e e e e rrar e e e e e e e e e e e s anseeaaeees 29

Introduction

The following milestone completion document applies to Subproject 2.2 — Striped Directories (also known as
DNE2) of the Lustre’ Distributed Namespace Project of the OpenSFS Lustre Development contract SFS-DEV-001
signed July 30th, 2011. The specific items executed for the Demonstration milestone and listed below were
approved on 19th May 2015.

The DNE2 code is functionally complete and recorded in the Implementation Milestone. The purpose of this

Milestone is to verify the code performs acceptably in a production-like environment. In addition to completing
all the Test Scenarios (demonstrated for the Implementation Milestone,) DNE2 Performance has been
measured as recorded below.

The tests were executed on a variety of hardware platforms include the OpenSFS Functional Test Cluster and
the public cloud. Details of the hardware are available in Appendix A. For all the tests, Lustre software Master
with DNE2 patches was used.

Subproject Description

Per the scope statement, the project is described as follows:

Today, Lustre filesystem routinely have thousands to tens of thousands of clients. As client numbers
continue to increase, a single Metadata Server (MDS) for a single Lustre filesystem becomes a
performance and scalability constraint. This restraint has been partially lifted with the completion of the
DNE1: Remote Directories sub-project which spread sub-directories on Lustre onto independent MDS

nodes and MDTs. A limitation still exists, however, for individual directories. Currently a single directory
can only be a single MDT served by a single MDS. This restriction limits both the quantity and performance
of files in any given directory.

Milestone Completion Criteria
Per the contract, Implementation milestone is described as follows:
Demonstration. Upon functional completion of the feature, Contractor shall demonstrate the appropriate

functionality of the project. This shall be done through execution of test cases designed to prove the acceptance
criteria defined during the Solution Architecture.

Demonstration specifics will be defined and mutually agreed to for each subproject in the scope and
architecture phases.

1 Other names and brands may be the property of others.

* Functional Test Plan: Contractor shall develop and recommend a functional test plan, as defined by
OpenSFS, designed to demonstrate the functional completeness of the feature. The results of functional
testing with supporting documentation will be presented to OpenSFS for review.

* Performance Test Execution: Contractor shall define and recommend a set of performance tests as
defined by OpenSFS to document the performance characteristics for performance related features.
Contractor shall execute these tests and present results of these tests to OpenSFS for review. OpenSFS
shall provide adequate test platforms when scale is necessary for performance testing as recommended
by Contractor and defined by OpenSFS.

Functional Test

Basic Functional Regression Testing

As described in the Solution Architecture, the basic Lustre regression tests have been updated to run DNE-
specific functionality. The basic testing will be run on a regular basis for all Lustre patches landed to the
master branch to ensure DNE striped directory functionality continues to work in the future. These tests are
designed to verify specific basic functionality in an efficient manner and are intended to run in the minimum
time possible so that they can be run on all patches.

Status: Complete

http://review.whamcloud.com/15163

Striped Directory Creation

usage: setdirstripe <--count|-c stripe count> [--index|-i mdt index]
[--hash-type|-t hash type] [--default stripe|-D] <dir>
stripe count: stripe count of the striped directory
mdt index: MDT index of first stripe
hash type: hash type of the striped directory
default stripe: set default striping parameters of the directory

Regression Tests

The test script creates all top-level test subdirectories on remote MDTs. Wherever possible, these directories
are automatically striped across multiple MDTs using the test mkdir () helper function. This ensures that a
majority of the regression tests run as part of these scripts are also exercised with DNE1 and DNE2 functionality.
Additional DNE2 specific functionality tests have been added to these scripts. Unless otherwise specified, all
operations shall succeed without error. The list of tests to sanity.sh to specifically exercise DNE2 functionality
include:

sanity.sh: Tests to verify operation under normal operating conditions
* test_17n "run e2fsck against master/slave MDT which contains remote dir"

For Idiskfs-backed MDTs create remote striped directories and create files within those directories, then
unmount the MDTs and verify with e2fsck that the on-disk structure of each MDT is consistent. Remount
the MDTs and remove the created files and directories and again verify with e2fsck that the on-disk
structure of each MDT is consistent. Create a directory on MDTO and migrate it to another MDT and then
verify with e2fsck that the on-disk structure is consistent.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/81f396b2-0e8d-11e5-8283a-5254006e85c2

* test_24x "cross MDT rename/link"

Create local and remote striped subdirectories, and a regular file within each. Rename the remote
directory to the local parent directory. Rename the file in the local directory over the file in the remote
directory. Create a local file and hard link it into the remote directory.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/8318f942-0e8d-11e5-828a-5254006e85c2

* test_24y "rename/link on the same dir should succeed"

Create a remote striped subdirectory, and a pair of regular files and directories within it. Rename one
directory over the second directory. Rename one file over the second file. Link a new name to the existing
file.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/83238a92-0e8d-11e5-828a-5254006e85c2

* test_24E "cross MDT rename/link"

Create two remote striped subdirectories on different MDTs, and a pair of regular files and directories
within it. Rename one directory over the second directory. Rename one file over the second file. Link a
new name to the existing file.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/83514180-0e8d-11e5-8283a-5254006e85c2

* test_31p "remove of open striped directory"

Create a striped directory and set a default directory striping pattern on it. Create subdirectories therein,
open the directories, and unlink them. Verify that the unlinked subdirectories are not accessible to the
namespace.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/85cd5fc0-0e8d-11e5-828a-5254006e85c2

¢ test_33d "openfile with 444 modes and malformed flags under remote dir"

Create a remote subdirectory, and create a read-only file within it that is owned by a non-root user. Open
file as the non-root user in read-write mode and verify that the open fails. Open/create a new read-only
file as a regular user in read-write mode should succeed. Opening the file again in read-write mode
should fail. Open the file with invalid flags should fail.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/867a0a9%a-0e8d-11e5-8283a-5254006e85¢c2

¢ test_33f "nonroot user can create, access, and remove a striped directory"

Enablemdt.*.enable remote dir gid=-1 onthe MDS nodes. Create a remote striped directory
as a non-root user. As the same user, create files within that directory, remove them, then remove the
directory.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/86889a88-0e8d-11e5-828a-5254006e85c2

* test_39p "remote directory cached attributes updated after create"

Create two remote striped subdirectories in a local parent directory. Verify the nlink count on the parent
directory is correct. Remove one remote subdirectory and verify the nlink count is decremented.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/87eb3e80-0e8d-11e5-828a-5254006e85c2

* test_154b "Open-by-FID for remote directory"

Create a remote directory and create a regular file on the remote MDT. Verify that the
SMOUNT/ .lustre/fid/ special directory works to open the file on the remote MDT. Verify that 1 fs
fid2path works on the remote file.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/8f4bdee6-0e8d-11e5-828a-5254006e85c2

¢ test_161b "link ea sanity under remote directory"

Create a remote directory, and two subdirectories and a regular file on the remote MDT. Create hard links
from the regular file to the remote MDTs. Verify that 1fs fid2path lists the paths to all names from
all MDTs. Rename the file to another MDT and verify that 1fs fid2path shows the correct new
filename.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/8fff2938-0e8d-11e5-8283a-5254006e85¢c2

* test_230a "Create remote directory and files under the remote directory"

Create a remote striped directory and two remote subdirectories, and a number of regular files on the
remote MDT. Verify that the directory and files are indeed created on the expected MDT, the same as the
parent directory.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/9464f282-0e8d-11e5-828a-5254006e85c2

* test_230b "migrate directory"

Create a remote directory and a number of local and remote subdirectories and regular files with hard
links and containing verifiable. Migrate the directory tree using 1£s mv and verify no error was
expected. Verify the original file contents have not changed.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/946c315a-0e8d-11e5-828a-5254006e85c2

* test_230c "check directory accessibility if migration is failed"

Create a remote directory and local and remote subdirectories, along with regular files containing
verifiable data. Start to migrate the directory tree using 1 fs mv, but interrupt the migration before it
completes. Verify that the interrupted migration directory is still accessible after the MDT is available
again.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/94757ab2-0e8d-11e5-828a-5254006e85c2

* test_230d "check migrate big directory"

Create a remote directory and a larger number of subdirectories and files therein (10000). Migrate the
parent directory to a new MDT and verify the file is on the target MDT and ensure the file data is correct.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/0daf5c50-143c-11e5-9804-5254006e85c2

* test_300g "check default striped directory for normal directory"

Create a local directory and set a variety of different default directory striping patterns on it. For each
pattern, create subdirectories and verify that they properly inherit the default directory striping pattern.
Remove the subdirectories. Remove the default directory striping pattern.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/96ddb10c-0e8d-11e5-828a-5254006e85c2

sanityn.sh: Tests to verify operations from two clients under normal operating

conditions
* test_81 "rename and stat under striped directory"

Create a local directory, and create striped subdirectories beneath it. Create a regular file beneath the
striped directory and verify that they can be renamed between directories. Verify that the renamed file is
not visible on the first mountpoint. Rename the file on the second mountpoint back to the original
filename, and verify it is again visible on the original mountpoint.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/12516edc-0e8e-11e5-828a-5254006e85c2

conf-sanity.sh: Tests to verify configuration is working correctly.
* test_32c "dne upgrade test"

Upgrade 2.4 and 2.5 pre-populated filesystem images to have multiple MDTs. Verify that the pre-existing
file data is accessible, and that new operations on the upgraded filesystems work correctly. Verify that
common configuration operations are working correctly on all MDTs.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/362c3c10-0e8e-11e5-828a-5254006e85c2

recovery-small.sh: Tests to verify RPC replay after communications failure (message loss)
* test_110a "create remote directory: drop client req"
* test_110b "create remote directory: drop master reply to client"
* test_110c "create remote directory: drop update rep on slave MDT"
* test_110d "remove remote directory: drop client req"
* test_110e "remove remote directory: drop master reply to client"
* test_110f "remove remote directory: drop master reply to client"
* test_110g "drop master reply during migration"
* test_110h "Cross-MDT file rename: drop slave MDT update reply"
¢ test_110i "Cross-MDT dir rename: drop slave MDT update reply"
¢ test_110j "Cross-MDT file link: drop slave MDT update reply"

Status: Passed

https://testing.hpdd.intel.com/test_sets/50504b5e-0e8e-11e5-828a-5254006e85¢c2

replay-single.sh: Tests to verify recovery after MDS failure
* test_80a "create remote dir, drop update rep from MDTO, fail MDT0"

* test_80b "create remote dir, drop update rep from MDTO, fail MDT1"

* test_80c "create remote dir, drop update rep from MDT1, fail MDTO, then MDT1"
* test_80d "create remote dir, drop update rep from MDT1, fail 2 MDTs at the same time"
* test_80e "create remote dir, drop MDT1 rep, fail MDTOQ"

* test_80f "create remote dir, drop MDT1 rep, fail MDT1"

* test_80g "create remote dir, drop MDT1 rep, fail MDTO, then MDT1"

* test_80h "create remote dir, drop MDT1 rep, fail 2 MDTs at the same time"

* test_81a "unlink remote dir, drop MDTO update rep, fail MDT1"

¢ test_81b "unlink remote dir, drop MDTO update reply, fail MDTO"

¢ test_81c "unlink remote dir, drop MDTO update reply, fail MDTO, then MDT1"

* test_81d "unlink remote dir, drop MDTO update reply, fail 2 MDTs"

* test_81e "unlink remote dir, drop MDT1 req reply, fail MDTO"

¢ test_81f "unlink remote dir, drop MDT1 req reply, fail MDT1"

* test_81g "unlink remote dir, drop req reply, fail MDTO, then MDT1"

¢ test_81h "unlink remote dir, drop request reply, fail 2 MDTs"

test_100a "create striped dir (master stripe is on MDTO), drop update rep from MDT1, fail MDT1"
test_100b "create striped dir(master stripe is on MDTO), fail MDT0"

test_110a "create striped dir(master stripe is on MDT1), fail MDTO"

test_110b "create striped dir(master stripe is on MDT1), fail MDTO and client"

test_110c "create striped dir(master stripe is on MDT1), fail MDT1"

test_110d "create striped dir(master stripe is on MDT1), fail MDT1 and client"

test_110e "create striped dir(master stripe is on MDT1), uncommit on MDT1, fail client & MDTO &
MDT1"

test_110f "create striped dir(master stripe is on MDT1), fail MDTO & MDT1"

test_110g "create striped dir(master stripe is on MDT1), uncommit on MDTO, fail client & MDTO &
MDT1"

test_111a "unlink striped dir(master stripe is on MDT1), fail MDTO"

test_111b "unlink striped dir(master stripe is on MDT1), fail MDT1"

test_111c "unlink striped dir(master stripe is on MDT1), uncommit on MDTO, fail client & MDTO &
MDT1"

test_111d "unlink striped dir(master stripe is on MDT1), uncommit on MDT1, fail client & MDTO0 &
MDT1"

test_111e "unlink striped dir(master stripe is on MDT1), uncommit on MDT1, fail MDTO & MDT1"
test_111f "unlink striped dir(master stripe is on MDT1), uncommit on MDTO, fail MDTO & MDT1"
test_111g "unlink striped dir(master stripe is on MDT1), fail MDTO & MDT1"

test_112a "cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDTQ"

test_112b "cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDT1"

test_112c "cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDT2"

test_112d "cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDT3"

test_112e "cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDTO & MDT1"

test_112f "cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDTO & MDT2"

test_112g "cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDTO & MDT3"

test_112h "cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDT1 & MDT2"

test_112i "cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDT1 & MDT3"

test_112j "Cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDT2 & MDT3"

test_112k "Cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDTO & MDT1 & MDT2"

test_112I "Cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDTO & MDT1 & MDT3"

test_112m "Cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on

MDT2, tgt_child is on MDT3), fail MDTO & MDT2 & MDT3"

test_112n "Cross MDT rename, (src_dir is on MDTO, src_child is on MDT1, tgt_dir is on MDT2, tgt_child
is on MDT3), fail MDT1 & MDT2 & MDT3"

Status: Passed

https://testing.hpdd.intel.com/test_sets/296cdcd0-0ea9-11e5-bael-5254006e85c2

Upgrade test

1.

2
3
4.
5

w ® N o

Create a filesystem with single MDT with Lustre 2.5.

. Create a directory tree and populate it with 1M regular files

. Upgrade the filesystem to 2.7 + DNE async commit patches.

Add 3 new MDTs to the filesystem.

. Create a striped directory with stripe_count = 4.,

1fs setdirstripe -c4 /mnt/lustre/striped dir
Create 1M files under the striped directory
Verify that both the original 1M files exist
Verify that the new 1M files are approximately evenly distributed across all four MDTs

Unlink both sets of files

10. Unlink the striped directory

11.No errors will be observed

Status: Passed

Test was completed on the OpenSFS test cluster on 2" June 2015 and again on 3" August 2015. The latest test
results are attached to https://jira.hpdd.intel.com/browse/LU-6946

Default stripe count test

1.

2.

3.

10

Create a filesystem with 4 MDTs, 4 OSTs, and 4 clients
Then create a testdir and set default stripe count = 2

mkdir /mnt/lustre/test
1fs setdirstripe -D -c2 /mnt/lustre/test
all of its children will be striped directory with stripe count = 2.

Run mdtest to validate /mnt/lustre/test

mdtest -n 100 -i 3 -d /mnt/lustre/test

4.

No errors will be observed, and correct striping will be observed.

Status: Passed

https://testing.hpdd.intel.com/sub_tests/96ebdfca-0e8d-11e5-828a-5254006e85c2

Many stripe count test

The many stripe count functional test is intended to show that a DNE2 configuration can handle many MDTs in
a single filesystem and a single directory can be striped over many MDTs. Due to the virtual AWS environment
in which this is being tested, while performance will be measured, neither performance scaling nor load testing

are primary goals of this test. It is rather a functional scaling test of the ability of the filesystem configuration

and directory striping code to handle a large number of MDTs.

1.

4.

Create a filesystem with 128 MDTs, 128 OSTs, and at least 128 client mount points (multiple mounts
per client)

For each stripe count N in 16, 32, 64, 96, 128 create a single striped directory:

1fs setdirstripe -c N /mnt/lustre/testN

Run mdtest on all client mount points, and each thread will create/stat/unlink at least 128k files in
the striped test directory.

No errors will be observed, and balanced striping of files across MDTs will be observed.

Environment Details:

8 MDS nodes, each with 16x MDT

8 0SS nodes, each with 16x OST

8 clients, each with 16 mount points

All nodes were m3.2xlarge instances

4 test runs, each in a single shared 16, 32, 64, 128 striped directory
mdsrate --create, --stat, --unlink in each directory

128k files per MDT for each run

8 threads per MDT for each run

Results from AWS showing support up to 128 MDTs:

Stripe count 16 32 64 128

Create/sec 21195.2 23149.7 24897.6 22564.1
Stat/sec 30030.6 27263.8 25727.0 28134.7
Unlink/sec 4968.5 5098.8 6198.8 6304.8

11

Status:

passed locally and on AWS

Raw results of AWS testing can be found here: https://jira.hpdd.intel.com/browse/LU-6737

Results of testing with 512 simulated stripes can be found in Appendix B.

Migration tool usage documentation
Migration tool is being used to migrate a directory from one MDT to another MDT. The command-line options

for the migration tool are:

1fs migrate -m <mdt index> [-v] <migration dir path>

-m mdt index indicate the MDT index of the target MDT
-v show the progress of migration.
migration dir path the name path of the directory being migrated.

Note: you can only specify a directory here, i.e. files cannot be migrated independently.

Migrate directory test

1.
2.

3.

7.

Status:

Setup Lustre with 4 MDTs, 4 OSTs and 1 client.
Create 5 directories /mnt/lustre/migrate{1..5} and 100 files under each directory on MDTO

Create another directory /mnt/lustre/other dir also on MDTO, then create symbol_link/link
files, which should be linked to files under /mnt/lustre/migrate{1..5}

Migrate /mnt/lustre/migrate{1..5} from MDTO to MDT1 by

1fs migrate -m 1 /mnt/lustre/migratel # migrate migratel from current
MDT to MDT1

1fs migrate -m 1 /mnt/lustre/migrate5

The migration should succeed without errors.

. Check /mnt/lustre/migrate{i}. Multiple link files will still be on MDTO. All other files will be

located on MDT1.
Verify the mode (permission) of the files and directories is same as before the migration.

Passed

Test Results:

https://testing.hpdd.intel.com/sub_tests/9464f282-0e8d-11e5-828a-5254006e85c2

https://testing.hpdd.intel.com/sub_tests/946c315a-0e8d-11e5-828a-5254006e85c2

https://testing.hpdd.intel.com/sub_tests/94757ab2-0e8d-11e5-8283a-5254006e85c2

https://testing.hpdd.intel.com/sub_tests/949a6a0c-0e8d-11e5-828a-5254006e85c2

https://testing.hpdd.intel.com/sub_tests/a87eb848-0127-11e5-9d1f-5254006e85c2

https://testing.hpdd.intel.com/sub_tests/a8862164-0127-11e5-9d1f-5254006e85c2

12

Upgrade with migrate

1.

2.
3.

4.
5.

Status:
runon

Create a Lustre filesystem with single MDT with Lustre 2.5 and create files and directories as Step 2 and

3 in Migration Directory Test above.
Upgrade the system to 2.7 + DNE Async Commit patches, and add 3 new MDTs.
Complete Steps 4, 5, 6, 7 as described in Migrate Directory with failed MDT test below.

Run LFSCK to verify filesystem consistency.
No errors will be observed.

Passed as part of conf-sanity 32c (does not include step 4). Passed as documented above in dedicated

4™ August 2015.

Conf-Sanity 32c results: https://testing.hpdd.intel.com/test _logs/fe5c679c-2580-11e5-866a-
5254006e85c2/show_text

4™ August 2015 test results:

Migrating directory with failed MDT

1.
2.

3.

6.

7.
8.

Status:

Setup Lustre with 4 MDTs, 4 OSTs, and 1 client.
Create 1 directory (/mnt/lustre/migrate dir)on MDTO and 100k files within the directory.

Start migrating the directory from MDTO to MDT1. After 30 seconds reboot both MDTO0 and MDT1.
Note: the reboot must happen during the migration, usually migrating 100k files should take much
more than 30 seconds in current 2.6.

1. 1fs migrate -m 1 -v /mnt/lustre/migrate dir # with -v you can see the
progress of migration.

. After the MDTO and MDT1 are restarted and re-mount and recovery finished, client will be able to

access the 100k files. Creating files under /mnt /lustre/migrate dir should be denied.

. Continue the migration with same command:

1. 1fs migrate -m 1 -v /mnt/lustre/migrate dir
Checkmigrate dir andfilesundermigrate dir arelocated on MDTIL.

Run LFSCK to verify filesystem consistency.
No errors will be present.

Passed sanity 230c (using slightly different test parameters). Passed as documented above in a

dedicated run on 4" Aug 2015.

Sanity 230C test results: https://testing.hpdd.intel.com/sub_tests/9a79b25c-2580-11e5-866a-5254006e85c2

4t August 2015 test results: https://jira.hpdd.intel.com/browse/LU-6955

Access the directory during migration

1.

13

Setup Lustre with 4 MDTs, 4 OSTs and 2 clients.

14

2. Create 1 directory and some files under the directory

mkdir /mnt/lustre/migrate dir
for F in {1,2,3,4,5}; do

echo "SFSFSFSFSF" > /mnt/lustre/migrate dir/fileS$F
done

3. On one client, migrate the directory among 4 MDTs

while true; do
mdt idx=$ ((RANDOM % MDTCOUNT))
1fs migration -m Smdt idx /mnt/lustre/migrate dir || break
done
echo "migrate directory failed"
return 1

4. Simultaneously, on another client access these files under the migrating directory

while true; do

ls $migrate dir2 > /dev/null || {
echo "read dir fails"
break

}

diff -u $DIR2/S$tdir/filel S$migrate dir2/filel ||{
echo "access filel fails"
break

}

cat Smigrate dir2/file2 > S$migrate dir2/file3 || {
echo "access file2/3 fails™"
break

}

echo"aaaaa">$migrate dir2/filed4 > /dev/null ||{
echo "access filed fails"
break

}

stat S$migrate dir2/file5 > /dev/null || {
echo "stat file5 fails"
break
}
touch S$migrate dir2/source file > /dev/null || rcl=$?
[$rcl -ne 0 -0 Srcl -ne 1 1 || {
echo "touch file failed with S$Srcl"
break;

if [-e Smigrate dir2/source file]; then
1n $migrate_dir2/source_file Smigrate dir2/link file \
2&>/dev/null | |rcl=$?
if [-e $migrate dir2/link file]; then
rm -rf $migrate dir2/link file
fi

mrename $migrate dir2/source file \
Smigrate dir2/target file 2&>/dev/null ||rcl=$?

[Srcl -ne 0 -o Srcl -ne 1 1 || {
echo "rename failed with S$rcl"
break

if [-e Smigrate dir2/target file]; then
rm -rf S$migrate dir2/target file 2&>/dev/null ||

rcl=$?
else
rm -rf S$migrate dir2/source file 2&>/dev/null ||
rcl=$?
fi
[Srcl -ne 0 -o Srcl -ne 1 1 || {
echo "unlink failed with Srcl"

break

fi
done

5. Steps 3 and 4 should keep running at least 5 minutes and will not return error.

Status: Passed with patch (http://review.whamcloud.com/14497) and this test is now included in sanityn.sh
as test_80b.

Link to passing test: https://testing.hpdd.intel.com/sub_tests/770330f6-17f6-11e5-89cc-5254006e85c2

Link to test log: https://testing.hpdd.intel.com/test logs/2468d136-3766-11e5-9d53-5254006e85c2/show_text

Failover and Recovery Soak Testing

With async update, cross-MDT operations do not need to synchronize updates on each target. Instead, updates
are recorded on each target and recovery of the filesystem from failure takes place using these update records.
All operations across MDTs are enabled; for example, cross-MDT rename and link succeeds and does not return
-EXDEV, so a workload like dbench that is doing renames should function correctly in a striped directory.

1. Setup Lustre with 4 MDS (each MDS has two MDTs), 4 OSTs, and at least 8 clients.

2. Each client will create a striped directory (stripe_count=4 and default stripe_count=4) so all of their
subdirectories will all be striped directories (stripe_count=4), to ensure there are enough cross-MDT
operations during the failover test. Under each striped directory,

1. 3 of 8 clients will keep doing tar, untar in the striped directory.
2. 3 of 8 clients will do dbench under striped directory.
3. 2 of 8 clients will run dd (lustre/tests/run_dd.sh)

3. Randomly reboot one of the MDSs at least once every 30 minutes and fail over to the backup MDS if
the test configuration allows it. (The optional configuration was not supported on the OpenSFS cluster).

4. The test should keep running at least 24 hours without report application error
Environment details:
¢ 8clients (3 running dbench, 3 running tar, and 2 running dd on a striped directory with default stripeEA)

¢ 4 MDS (each with 1 MDTs)

15

* 2 0SS (each with 2 OSTs)
* Failover one MDT randomly every 30 mins.

* Passing run on OpenSFS cluster completed on 2" August 2015 after running for 24 hours and 48
failovers.

Status: Passed.

The build that was run to pass the tests is https://build.hpdd.intel.com/job/lustre-reviews/33759/.

The test results and patch list delta from Master can be found in: https://jira.hpdd.intel.com/browse/LU-6773.

The test script used for the tests is: http://review.whamcloud.com/4320

Compatibility Test
Testing of older clients and newer servers, and vice versa, is intended to verify that these combinations fail
gracefully when features occur, and do not crash, hang, LBUG, in such situations.

2.5/2.7 Client with 2.7+ patches DNE Async Commit Server
1. Setup Lustre with 4 MDTs, 4 OSTs, and 2 clients. MDT/OST version should be 2.7 + DNE Async Commit.
client version should be 2.5.0

2. Run sanity on client with non-striped directories, it should pass.
3. Repeat 1 and 2, but client version will be 2.7.0.

Status: Passed Compatibility was demonstrated. There were some failures, however all failures were attributed
to non-DNE issues (change in supported features such as removal of SOM code) Details can be found in ticket:
https://jira.hpdd.intel.com/browse/LU-6660 and this change records the successful completion:
http://review.whamcloud.com/15323

2.7 + patches DNE Async Commit Client with 2.5/2.7 Server
1. Setup Lustre with 4 MDTs, 4 OSTs, and 2 clients. MDT/OST version will be 2.5, client version will be 2.7
+ DNE Async Commit.

2. Run sanity on client with non-striped directories. No errors are observed.
3. Repeat 1 and 2 with MDT/OST version 2.7.

Status: Passed Compatibility was demonstrated. There were some failures, however all failures were attributed
to non-DNE issues (change in supported features such as removal of SOM code) Details can be found in ticket:
https://jira.hpdd.intel.com/browse/LU-6661 and this change records the successful completion:
http://review.whamcloud.com/15521

16

Performance Test

The performance testing is intended to measure create and unlink workload scaling as the number of MDS
nodes and MDTs is increased. Testing will be done with a single MDS/MDT to provide baseline performance,
and then the number of MDTs will be increased to show performance scaling. Testing will be done with both a
single MDT per MDS as well as multiple MDTs per MDS to explore likely deployment configurations in
production environments.

1. Configure Lustre with 1, 2, 3, then 4 MDS nodes, each with 1, 2, 3, 4 MDTs per MDS, with the number
of clients available on the OpenSFS test cluster.

. Configure clients with multiple mount points to allow more concurrent metadata RPCs

. For each test create a single directory striped over all MDTs

. Create 20,000 files per client within the striped directory, measure aggregate create rate.

. Unlink all files created by each client, measure aggregate unlink rate

u b~ W N

Status: Passed
Due to hardware limitations, the configuration available on the OpenSFS test cluster was:

¢ 20 clients, one mountpoint per client
o 24 threads per client
o fail_loc=0x804 to allow multiple modify RPC per mount point
¢ 4 MDS (4 MDTs on each MDS)
o MDT 20GB Idiskfs OSD on 1TB SATA HDD
o 10GB external journal on 90GB SATA SSD
e 10SS (8 0STs)
o OST 50GB Idiskfs OSD on 1TB SATA HDD, internal journal
* QDR Infiniband network between all nodes
In initial performance testing on Lustre 2.7.0, a lock bottleneck was found in the kernel quota layer that
prevented file create performance scaling with multiple MDTs on the same node with |diskfs. This has largely
been avoided in osd-Idiskfs, but needs further kernel-side changes in order to make the kernel quota more

scalable. As a result, for these tests, quota has been disabled in Idiskfs.

17

File Create Rate Scaling

80000
70000 —
—1 |
60000
[]
50000 1 DT
[
o)
€ 40000 e=m==2MDT
=
9 B=3MDT
* 30000
@l \DT
[|
20000 =
u
10000
0
1 2 3 4 MDS Count

The mdsrate File Create Rate Scaling graph shows that striping the directory over additional MDTs on new MDS
nodes (constant number of MDTs per MDS) improves the file creation rate approximately linearly with each
new MDS - between 81-93% per additional MDS. The scaling shown when adding MDTs on an MDS (constant
MDS Count) shows a reasonable improvement for a second MDT on the same MDS, approximately 30-45%, but
only 10-20% for the third MDT, and virtually no performance improvement for the fourth MDT.

The lack of continued scaling when adding MDTs on an MDS is likely a result of two related factors. Internal
Lustre and kernel locking limit the scalability of a single MDS node, so adding more MDTs to the same MDS
increases contention on the same locks. Secondly, the hardware resources of the MDS node are limited (CPU,
RAM, network) so increasing the MDT count does not allow further scaling without adding more hardware.
Since the Lustre MDT code is largely multi-threaded already, and no performance degradation was observed
from 3 MDTs/MDS to 4 MDTs/MDS the scaling limit is likely the result of limited hardware resources.

18

File Unlink Rate Scaling

35000
30000
25000
T B=1MDT
S 20000
@ =R MDT
>
@ 15000 @=3N\IDT
=
10000 m=4MDT
5000
0
1 2 3 4 MDS Count

Similar to the File Create results, the mdsrate File Unlink Rate Scaling performance shows good scaling
improvements by striping the directory over additional MDTs on separate MDS nodes - between 81-95%
improvement for each added MDS. The scaling shown by adding MDTs on an MDS is relatively modest for
unlinks, only about 10% improvement for the second MDT, and a variable amount for the third and fourth
MDTs, in some cases showing negative scaling for three and four MDTs.

This suggests that for optimal performance scaling with DNE striped directories that there is little benefit for
having more than two MDTs per MDS. Since there is still some noticeable performance improvement from
having two MDTs per MDS, and this more fully utilizes the MDS hardware, it is reasonable to run in this
configuration. For upgrading existing active-passive two MDS configurations, it would be most cost effective to
add three new MDTs to the existing MDS nodes and could achieve a 105-165% performance improvement for a
relatively minimal increase in hardware. Raw results from this work is recorded in Appendix C: Performance
results raw data and on https://jira.hpdd.intel.com/browse/LU-6786

19

Appendices
Appendix A: Optional Test: Stress testing with racer. sh

The primary test for migration + file operations is covered under Access the directory during Migration. As an
optional test racer + migrate was attempted with the below steps.

Racer is a stress testing framework designed to test races and unusual combinations of operations that would
not otherwise be caught by regular regression test scripts. It creates files, directories, hard and symbolic links,
then performs random operations thereon. It is easily extensible to add in new types of file and namespace
operations. For testing DNE 2 functionality a racer script to create a randomly-named remote striped
directories with random MDT index and random stripe counts is added. A racer script to migrate a randomly-
named file or directory to a random MDT index is also added.

1. Create a filesystem with 4 MDTs, 4 OSTs and 2 clients.
2. Run racer with MDSCOUNT=4, striped directory.
3. Racer will attempt to run for 10 minutes without LBUG.

4. Clients and MDSes should be able to unmount without problems.
5. Run LFSCK to verify filesystem consistency.

Status: Failed. We ran into issues with this test including an Assertion that we believe is related to the
LOHA EXISTS settingin osp_object getattr(). We plan to continue to look into and resolve these issues
as part of Lustre 2.8 stabilization.

In order to verify that directory migration is working under normal usage circumstances, additional tests were
performed with migrate combined with other common operations such as cat, append, Is, In, rm, stat, touch,
rename, as shown in the Access the directory during Migration section.

20

Appendix B: Simulated Wide Striping

Results of testing with 512 simulated stripes. This is using a special testing hook (fail_loc=0x1703) that allows
multiple stripes to be allocated from the same MDT in order to allow functional testing with limited HW. This
can be seen in the output below, which re-uses the same MDT indices repeatedly, and allocates multiple
objects (0x104 through 0x183 = 128) from the same FID sequence on each MDT.

While this functionality does not exercise all of the same code paths as a fully-configured testbed, it does allow
exercising some of these wide striping code paths on a continual basis with a simple test configuration.

== sanity test 300k: test large striped directory == 01:30:04 (1433320204)
fail loc=0x1703

fail loc=0
/mnt/lustre/d300k.sanity/striped dir
lmv_stripe count: 512

Imv_stripe offset: 0

mdtidx FID[seqg:oid:ver]
[0x200000400:0x104:0x0]
[0x240000403:0x104:0x0]
[0x280000403:0x104:0x0]
[0x2c0000403:0x104:0x0]
[0x200000400:0x105:0x0]
[0x240000403:0x105:0x0]
[0x280000403:0x105:0x0]
[0x2c0000403:0x105:0x0]
[0x200000400:0x106:0x0]
[0x240000403:0x106:0x0]
[0x280000403:0x106:0x0]
[0x2c0000403:0x106:0x0]
[0x200000400:0x107:0x0]
[0x240000403:0x107:0x0]
[0x280000403:0x107:0x0]
[0x2c0000403:0x107:0x0]
[0x200000400:0x108:0x0]
[0x240000403:0x108:0x0]
[0x280000403:0x108:0x0]
[0x2c0000403:0x108:0x0]
[0x200000400:0x109:0x0]
[0x240000403:0x109:0x0]
[0x280000403:0x109:0x0]
[0x2c0000403:0x109:0x0]
[0x200000400:0x10a:0x0]
[0x240000403:0x10a:0x0]
[0x280000403:0x10a:0x0]
[0x2c0000403:0x10a:0x0]
[0x200000400:0x10b:0x0]
[0x240000403:0x10b:0x0]
[0x280000403:0x10b:0x0]
[0x2c0000403:0x10b:0x0]
[0x200000400:0x10c:0x0]
[0x240000403:0x10c:0x0]
[0x280000403:0x10c:0x0]
[0x2c0000403:0x10c:0x0]
[0x200000400:0x10d:0x0]
[0x240000403:0x10d:0x0]
[0x280000403:0x10d:0x0]
[0x2c0000403:0x10d:0x0]
[0x200000400:0x10e:0x0]
[0x240000403:0x10e:0x0]
[0x280000403:0x10e:0x0]
[0x2c0000403:0x10e:0x0]
[0x200000400:0x10£f:0x0]
[0x240000403:0x10£:0x0]

o

P OWMNRPFOWNRFRFOWNRFOWNRFOWNRFOWNRFOWNRFOWNRFRFOWNRFOWNEFOWDNLR

21

22

F OWNRPFOWNRFRFOWNRFOWNRFOWNRFOWNRPRFOWNRFOWNRFOWNREFOWNRPRFOWNRFOWNRPRFOWNRFOWNRPRFOWNREFOWNEOWDN

[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:

0x10f:
0x10f:
0x110:
0x110:
0x110:
0x110:
0x111:
0x111:
0x111:
0x111:
0x112:
0x112:
0x112:
0x112:
0x113:
0x113:
0x113:
0x113:
0x114:
0x114:
0x114:
0x114:
0x115:
0x115:
0x115:
0x115:
0x116:
0x116:
0x116:
0x116:
0x117:
0x117:
0x117:
0x117:
0x118:
0x118:
0x118:
0x118:
0x119:
0x119:
0x119:
0x119:
Oxlla:
Oxlla:
Oxlla:
Oxlla:
0x11b:
0x11b:
0x11b:
0x11b:
Oxllc:
Oxllc:
Oxllc:
Oxllc:
0x11d:
0x11d:
0x11d:
0x11d:
Oxlle:
Oxlle:
Oxlle:
Oxlle:
0x11f:
0x11f:
0x11f:
0x11f:
0x120:
0x120:

0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]

23

F OWNRPFOWNRFRFOWNRFOWNRFOWNRFOWNRPRFOWNRFOWNRFOWNREFOWNRPRFOWNRFOWNRPRFOWNRFOWNRPRFOWNREFOWNEOWDN

[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:

0x120:
0x120:
0x121:
0x121:
0x121:
0x121:
0x122:
0x122:
0x122:
0x122:
0x123:
0x123:
0x123:
0x123:
0x124:
0x124:
0x124:
0x124:
0x125:
0x125:
0x125:
0x125:
0x126:
0x126:
0x126:
0x126:
0x127:
0x127:
0x127:
0x127:
0x128:
0x128:
0x128:
0x128:
0x129:
0x129:
0x129:
0x129:
0xl12a:
0xl12a:
0xl12a:
0xl12a:
0x12b:
0x12b:
0x12b:
0x12b:
0x12c:
0x12c:
0xl1l2c:
0xl1l2c:
0x12d:
0x12d:
0x12d:
0x12d:
Oxl1l2e:
Oxl1l2e:
Oxl2e:
Oxl1l2e:
0x12f:
0x12f:
0x12f:
0x12f:
0x130:
0x130:
0x130:
0x130:
0x131:
0x131:

0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]

24

F OWNRPFOWNRFRFOWNRFOWNRFOWNRFOWNRPRFOWNRFOWNRFOWNREFOWNRPRFOWNRFOWNRPRFOWNRFOWNRPRFOWNREFOWNEOWDN

[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:

0x131:
0x131:
0x132:
0x132:
0x132:
0x132:
0x133:
0x133:
0x133:
0x133:
0x134:
0x134:
0x134:
0x134:
0x135:
0x135:
0x135:
0x135:
0x136:
0x136:
0x136:
0x136:
0x137:
0x137:
0x137:
0x137:
0x138:
0x138:
0x138:
0x138:
0x139:
0x139:
0x139:
0x139:
0x13a:
0x13a:
0x13a:
0x13a:
0x13b:
0x13b:
0x13b:
0x13b:
0x13c:
0x13c:
0x13c:
0x13c:
0x13d:
0x13d:
0x13d:
0x13d:
0x13e:
0x13e:
0x13e:
0x13e:
0x13f:
0x13f:
0x13f:
0x13f:
0x140:
0x140:
0x140:
0x140:
0x141:
0x141:
0x141:
0x141:
0x142:
0x142:

0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]

25

F OWNRPFOWNRFRFOWNRFOWNRFOWNRFOWNRPRFOWNRFOWNRFOWNREFOWNRPRFOWNRFOWNRPRFOWNRFOWNRPRFOWNREFOWNEOWDN

[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:

0x142:
0x142:
0x143:
0x143:
0x143:
0x143:
0x144:
0x144:
0x144:
0x144:
0x145:
0x145:
0x145:
0x145:
0x146:
0x146:
0x146:
0x146:
0x147:
0x147:
0x147:
0x147:
0x148:
0x148:
0x148:
0x148:
0x149:
0x149:
0x149:
0x149:
Oxl4a:
Oxl4a:
Oxl4a:
Oxl4a:
0x14b:
0x14b:
0x14b:
0x14b:
Oxl4c:
Oxl4c:
Oxl4c:
Oxl4c:
0x14d:
0x14d:
0x14d:
0x14d:
Oxl4e:
Oxl4e:
Oxl4e:
Oxl4e:
0x14f:
0x14f:
0x14f:
0x14f:
0x150:
0x150:
0x150:
0x150:
0x151:
0x151:
0x151:
0x151:
0x152:
0x152:
0x152:
0x152:
0x153:
0x153:

0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]

26

F OWNRPFOWNRFRFOWNRFOWNRFOWNRFOWNRPRFOWNRFOWNRFOWNREFOWNRPRFOWNRFOWNRPRFOWNRFOWNRPRFOWNREFOWNEOWDN

[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:

0x153:
0x153:
0x154:
0x154:
0x154:
0x154:
0x155:
0x155:
0x155:
0x155:
0x156:
0x156:
0x156:
0x156:
0x157:
0x157:
0x157:
0x157:
0x158:
0x158:
0x158:
0x158:
0x159:
0x159:
0x159:
0x159:
Ox1l5a:
Ox1l5a:
Oxl5a:
Ox1l5a:
0x15b:
0x15b:
0x15b:
0x15b:
0x15c:
0x15c:
0x15c:
0x15c:
0x15d:
0x15d:
0x15d:
0x15d:
Ox1l5e:
Ox1l5e:
Ox1l5e:
Ox1l5e:
0x15f:
0x15f:
0x15f:
0x15f:
0x160:
0x160:
0x160:
0x160:
0x161:
0x161:
0x161:
0x161:
0x162:
0x162:
0x162:
0x162:
0x163:
0x163:
0x163:
0x163:
0x164:
0x164:

0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]

27

F OWNRPFOWNRFRFOWNRFOWNRFOWNRFOWNRPRFOWNRFOWNRFOWNREFOWNRPRFOWNRFOWNRPRFOWNRFOWNRPRFOWNREFOWNEOWDN

[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:
[0x280000403:
[0x2c0000403:
[0x200000400:
[0x240000403:

0x164:
0x164:
0x165:
0x165:
0x165:
0x165:
0x166:
0x166:
0x166:
0x166:
0x167:
0x167:
0x167:
0x167:
0x168:
0x168:
0x168:
0x168:
0x169:
0x169:
0x169:
0x169:
Oxl6a:
Oxl6a:
Oxl6a:
Oxl6a:
Oxl6b:
Oxl6b:
Oxl6b:
Oxl6b:
Oxl6c:
Oxlé6c:
Oxl6c:
Oxl6c:
Oxleéd:
Oxle6d:
Oxlé6d:
Oxlé6d:
Oxl6e:
Oxl6e:
Oxl6e:
Oxl6e:
0x1l6f:
0x1l6f:
0x1l6f:
0x1l6f:
0x170:
0x170:
0x170:
0x170:
0x171:
0x171:
0x171:
0x171:
0x172:
0x172:
0x172:
0x172:
0x173:
0x173:
0x173:
0x173:
0x174:
0x174:
0x174:
0x174:
0x175:
0x175:

0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]
0x0]

[0x280000403:0x175:0x0]
[0x2c0000403:0x175:0x0]
[0x200000400:0x176:0x0]
[0x240000403:0x176:0x0]
[0x280000403:0x176:0x0]
[0x2c0000403:0x176:0x0]
[0x200000400:0x177:0x0]
[0x240000403:0x177:0x0]
[0x280000403:0x177:0x0]
[0x2c0000403:0x177:0x0]
[0x200000400:0x178:0x0]
[0x240000403:0x178:0x0]
[0x280000403:0x178:0x0]
[0x2c0000403:0x178:0x0]
[0x200000400:0x179:0x0]
[0x240000403:0x179:0x0]
[0x280000403:0x179:0x0]
[0x2c0000403:0x179:0x0]
[0x200000400:0x17a:0x0]
[0x240000403:0x17a:0x0]
[0x280000403:0x17a:0x0]
[0x2c0000403:0x17a:0x0]
[0x200000400:0x17b:0x0]
[0x240000403:0x17b:0x0]
[0x280000403:0x17b:0x0]
[0x2c0000403:0x17b:0x0]
[0x200000400:0x17c:0x0]
[0x240000403:0x17c:0x0]
[0x280000403:0x17c:0x0]
[0x2c0000403:0x17c:0x0]
[0x200000400:0x17d:0x0]
[0x240000403:0x17d:0x0]
[0x280000403:0x17d:0x0]
[0x2c0000403:0x17d:0x0]
[0x200000400:0x17e:0x0]
[0x240000403:0x17e:0x0]
[0x280000403:0x17e:0x0]
[0x2c0000403:0x17e:0x0]
[0x200000400:0x17£f:0x0]
[0x240000403:0x17£f:0x0]
[0x280000403:0x17£f:0x0]
[0x2c0000403:0x17£f:0x0]
[0x200000400:0x180:0x0]
[0x240000403:0x180:0x0]
[0x280000403:0x180:0x0]
[0x2c0000403:0x180:0x0]
[0x200000400:0x181:0x0]
[0x240000403:0x181:0x0]
[0x280000403:0x181:0x0]
[0x2c0000403:0x181:0x0]
[0x200000400:0x182:0x0]
[0x240000403:0x182:0x0]
[0x280000403:0x182:0x0]
[0x2c0000403:0x182:0x0]
[0x200000400:0x183:0x0]
[0x240000403:0x183:0x0]
[0x280000403:0x183:0x0]
[0x2c0000403:0x183:0x0]

Resetting fail loc on all nodes...done.
PASS 300k (7s)
== sanity test complete, duration 9 sec == 01:30:11 (1433320211)

NP OWNRFRFOWNRFOWNRFOWNREFOWNRFOWNREFOWNRFRFOWNREFOWNRFROWNREFOWNROWNREFOWNREOWNDN

w

20 clients (with fail_loc=0x804, and each client run 24 threads, totally 480 threads) with 4 MDSes (each MDS
has up to 4 MDTs) and 1 OSS (8 OSTs)

usr/lib64/openmpi/bin/mpirun -np 480 -machinefile /home/di.wang/machine file
/usr/lib64/lustre/tests/mdsrate --mknod --dir /mnt/lustre/test n --filefmt

'£%%d"

--nfiles 960000

MDS count 1 MDT/MDS | 2 MDT/MDS | 3 MDT/MDS | 4 MDT/MDS
1 15972 18478 21825 24668

2 29616 42737 50412 51461

3 45520 58967 64138 64805

4 52034 64459 68294 68985

MDS count 1 MDT/MDS | 2 MDT/MDS | 3 MDT/MDS | 4 MDT/MDS
1 10978 12669 14021 12091

2 19772 22410 24451 22976

3 28184 28407 30382 30555

4 30256 32575 30750 32475

An additional 5 test runs produced the following data:

MDS count | 1 MDT/MDS | 2 MDT/MDS | 3 MDT/MDS | 4 MDT/MDS
1 15796.2 18366.9 21725.5 24106.4

2 28920.7 38091.9 49249.8 46674.8

3 48948.9 57828.1 54075.2 65179.2

4 55374.2 57107.5 68028.9 68683.7
MDS count | 1 MDT/MDS | 2 MDT/MDS | 3 MDT/MDS | 4 MDT/MDS

29

1 11113.9 12750.6 12600.1 12650.5

2 22038.0 22124.9 23061.7 24074.1

3 28579.4 25158.9 29239.0 30165.9

4 28063.6 28590.3 32760.1 33432.3

MDS count | 1 MDT/MDS 2 MDT/MDS 3 MDT/MDS 4 MDT/MDS
1 189.614 248.172 82.983 471.721

2 314.631 7943.809 2026.755 11382.423
3 2234.408 2892.442 18932.353 1035.150

4 3592.449 20703.777 372.576 731.603
MDS count | 1 MDT/MDS 2 MDT/MDS 3 MDT/MDS 4 MDT/MDS
1 111.063 145.657 662.592 736.033

2 2171.947 1457.276 1471.920 805.600

3 1550.384 5957.475 677.554 495.668

4 6557.413 7042.628 524.715 248.097

30

