
i

Solution Architecture
For

Shared Key Authentication and Encryption

Revision History

Date Revision Author
2012-07-18 Created ajk

ii

Table	 of	 Contents

...Introduction	 1
..Solution	 Requirements	 1

...Security	 1
...Modularity	 1
..Testability	 2

...Reuse	 of	 Cryptography	 Code	 2
...Easy	 Key	 Management	 2

..Use	 Cases	 2
...Sensitive	 Data	 2

...Strong	 Cryptography	 Without	 Kerberos	 2
..GSSAPI	 Unit	 Testing	 3

...Solution	 Proposal	 3
...Unit/Integration	 Test	 Plan	 4

..Null	 GSSAPI	 Mechanism	 4
...Shared	 Key	 Null	 Security	 Flavor	 4
...Userspace	 Key-‐Generation	 Tool	 4
...Server-‐Side	 Key	 Loading	 Method	 4
..Client-‐Side	 Key	 Loading	 Method	 4

..Shared	 Key	 Privacy	 Security	 Flavor	 4
...Shared	 Key	 Privacy	 and	 Integrity	 Security	 Flavor	 4

...Acceptance	 Criteria	 4

1

I. Introduction
The Lustre filesystem currently supports Kerberos authentication to protect file
data and metadata from network eavesdropping and tampering. While Kerberos is
an excellent authentication protocol, it requires some infrastructure at the client
end that is not trivial to deploy nor always permissible by site policy.
A coexisting shared-key, host-based authentication system would preserve the
authenticity, integrity, and privacy of file data and metadata but without requiring
any additional infrastructure on the client side. In such a system, a single key
would be generated for each client host, and that key would be installed on both
the client and the server.
Lustre’s Kerberos support is provided through the Generic Security Services
Application Program Interface (GSSAPI), a modular interface for providing
authentication and encryption mechanisms. By implementing a shared-key
system as a GSSAPI mechanism, Lustre’s Kerberos functionality can be left
untouched, and no new authentication and encryption code needs to be added.
We propose three new Lustre security flavors with accompanying GSSAPI
mechanisms:

• sknull: no cryptography—for testing only, with a debug mode that logs incoming
and outgoing packet signatures

• ski: data integrity through strong, host-based message authentication

• skpi: both data integrity and privacy through the same host-based authentication
as ski plus strong encryption

II. Solution Requirements

Security
The shared key changes must provide mutual authentication and encryption
between client and server using cryptographically strong, well-tested, and
well-understood cipher algorithms, providing integrity and privacy protection
equivalent to what is offered by the current Kerberos functionality. The key
must be a simple shared secret.

Modularity
Shared key authentication and encryption must not interfere with and must
be usable independently from Lustre’s existing Kerberos-based functionality.
When shared key authentication is disabled, authentication and encryption
must be indistinguishable from the current Kerberos functionality. The
shared key changes must introduce no new authentication or encryption
code into Lustre itself but rather must be implemented as GSSAPI
mechanisms selected by Lustre security flavors. The shared key

2

cryptography shall have no direct knowledge of or communications with the
Lustre code.

Testability
The shared key functionality must be testable and must not reduce the
testability of Lustre’s existing code paths. A null security flavor and GSSAPI
mechanism must be implemented to ease testing of these code paths, and
unit and functional tests must be implemented for the null code paths as
well as the shared key authentication and encryption code paths.

Reuse of Cryptography Code
The pitfalls of reimplementing cryptographic algorithms must be avoided.
No new cipher algorithms will be invented, instead opting for industry
standards such as AES. Well-tested, well-understood existing code and
services (such as the Linux keychain) will be reused wherever practical.

Easy Key Management
Userspace tools to create, load safely into Lustre, list, and revoke keys must
be available.

Easy Configuration
Shared key authentication and encryption must be enabled or disabled using
a single, simple configuration parameter. It must be disabled by default to
avoid creating a backdoor to the Kerberos flavor.

III. Use Cases

Sensitive Data
Medical researchers at different sites want to share research data. Due to
regulations on protected health information (PHI), the researchers want the
data to be encrypted in transit and protected by strong authentication1. The
skpi security flavor, proposed below, allows the researchers to use Lustre to
collaborate with minimal additional configuration or maintenance overhead.

 Strong Cryptography Without Kerberos
The two researchers above could use Lustre’s existing Kerberos support to
fulfill their ethical and compliance obligations. Researcher A, however, works
at a site with no existing Kerberos infrastructure. To use Kerberos,

1 Note that strong authentication and encryption are not the only requirements imposed by regulations such as
HIPAA, and this solution does not attempt to satisfy all those requirement. This solution does provide strong
authentication and encryption, however, which may be a part of a site’s HIPAA alignment strategy.

3

Researcher A would have to maintain an independent Kerberos realm;
expending resources on this operational overhead is undesirable.
Researcher B’s site does have a Kerberos infrastructure, but its procedures
for issuing credentials to external people (such as Researcher A or countless
future collaborators) are cumbersome and time-consuming. What’s more,
Researcher B’s site does not permit Researcher B to run an independent
authentication realm.
Kerberos is an excellent authentication system for some sites. But for
Researchers A and B, it’s not a good fit. These researchers can get strong
cryptography with the ski or skpi security flavors proposed below with
minimal overhead.

GSSAPI Unit Testing
A Lustre developer making changes to the GSSAPI support code wants to
test those changes. The sknull security flavor proposed below will make this
testing simpler because it won’t involve maintaining test keys or a test
Kerberos infrastructure.

IV. Solution Proposal
In the Lustre architecture, all the components, including the client, are trusted,
meaning if the client is compromised, no choice of authentication or encryption
mechanism will protect file data. That said, cryptographically strong algorithms
will prevent network-based eavesdropping and monkey-in-the-middle attacks.
Implementing shared key as a GSSAPI mechanism and security flavors will achieve
the modularity goal. Since the current functionality interfaces not directly with
Kerberos but indirectly through the GSSAPI, implementing a separate GSSAPI
mechanism will keep the shared key functionality totally separate. Two new
security flavors are proposed: ski, which provides data integrity through strong
message authentication; and skpi, which provides both data integrity and privacy
through encryption.
Testability of the shared key functionality starts with the GSSAPI code path. A null
GSSAPI mechanism will be developed to allow easier testing than the shared key
and Kerberos mechanisms. We also propose a third security flavor to use this
mechanism (sknull), complete with a debug mode that logs incoming and outgoing
packet signatures. Unit tests can be written to examine the debug output. The
shared key mechanism will also include this debug mode.
To avoid the common but egregious pitfall of implementing cryptography
algorithms incorrectly, the shared key mechanism and security flavors will use

4

existing kernel cryptography modules and the Linux keychain for key
management.
A key management interface will be achieved by developing userspace tools to
create, list, and revoke keys and lctl methods to load the keys into a secure
memory module so Lustre can then access them. Unit testing of these tools will
be straightforward.

V. Unit/Integration Test Plan

Null GSSAPI Mechanism
Attempts to authenticate to a trivial GSSAPI server against the null
mechanism using no credentials.

Shared Key Null Security Flavor
Attempts to mount a Lustre filesystem using the shared key null security
flavor (sknull).

Userspace Key-Generation Tool
Attempts to generate a shared key using the provided userspace tool.

Server-Side Key Loading Method
Attempts to load a shared key into the Lustre server using the provided lctl
method.

Client-Side Key Loading Method
Attempts to load a shared key into the Lustre client using the provided lctl
method.

Shared Key Privacy Security Flavor
Attempts to mount a Lustre filesystem using the shared key integrity
security flavor (ski). Tests whether the filesystem can be mounted with an
incorrect or missing key.

Shared Key Privacy and Integrity Security Flavor
Attempts to mount a Lustre filesystem using the shared key privacy and
integrity security flavor (skpi). Tests whether filesystem can be mounted
with incorrect or missing key. Tests for encrypted communications.

VI. Acceptance Criteria
SFS-DEV-002.2.AC1: All unit tests pass.

5

SFS-DEV-002.2.AC2: Shared keys can be successfully created, loaded into Lustre
clients and servers, listed, and revoked.
SFS-DEV-002.2.AC3: A user can access the filesystem using either shared key and
Kerberos authentication (not necessarily both at the same time).
SFS-DEV-002.2.AC4: A user cannot access the filesystem using an incorrect key or
a zero-length key.

