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Introduction

This document describes demonstration of sub-project 2.1 - SMP Node Affinity -
within the OpenSFS Lustre Development contract SFS-DEV-001 signed 7/30/2011.

The SMP Node Affinity code is functionally complete. The purpose of this Milestone
is to verify that the code performs acceptably in a production-like environment. In
addition to achieving the Acceptance Criteria (recorded in the SMP Node Affinity
Solution Architecture), SMP Node Affinity Performance will be measured as
described below.

Performance Baseline

SMP Node Affinity code delivers a performance enhancement on multi-core MDSs.
To demonstrate the completion of the SMP Node Affinity goals, a baseline
performance is established to compare against. The baseline is chosen as Lustre
2.2.

SMP Node Affinity code arrived in Master as a series of 45 change-sets, containing
over 14K LOC. These changes arrived over a six week period. Performance
measurements are made with a Lustre build that includes the SMP Node Affinity
patches as of July 1st 2012. The version of Lustre with SMP Node Affinity enabled
is known in this document as Lustre 2.3.

Test Methodology

The following tools will be used to provide a production-like load. Performance of
the MDS will be measured using Lnet selftest and mdtest.

Lnet selftest

In-order to generate a suitable load, high concurrency is required on the client
side. High concurrency in this environment is measure as over one thousand
RPCs/second from 16 clients.

mdtest
Multiple mounts on each client
* Each thread operates on a individual mount.

+ Sufficient workload for shared directory is achieved because the target
directory has a separate inode for each mount on the client.

Summary of Demonstration

SMP Node Affinity patches display a significant speed-up in all meta-data
operations.
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The figure above illustrates the performance enhancement for one example case:
create a new file with an increasing a number of clients.

Code Availability
Code with SMP Node Affinity patches applied is available as Lustre Master:

http://git.whamcloud.com/?p=fs/lustre-release.qgit:a=summary



http://git.whamcloud.com/?p=fs/lustre-release.git;a=summary

Appendix 1: Detailed Demonstration Results



OPENSFS SMP NODE AFFINITY DEMONSTRATION

Liang Zhen (liang.zhen@intel.com)

Hardware

MDS node:

« 2 x Intel Xeon(R) X5650 2.67GHz Six-core Processor (2-HT each core), which will present
as 24 CPUs on Linux

- 24GB DDR3 1333MHz Memory

« 2PT 40Gb/s 4X QSFP InfiniBand adapter card (Mellanox MT26428)

- 1 QDR IB port on motherboard

« SSD as external journal device (INTEL SSDSA2CW120G3), SATA Il Enterprise Hard Drive
as MDT (single disk, WDC WD2502ABYS-02B7A0)

« 2 x AMD Opteron 6128 2.0GHz Eight-Core Processor

- 16GB DDR3 1333MHz Memory

« 2PT 40Gb/s 4X QSFP InfiniBand adapter card (Mellanox MT26428)

- 1 QDR IB port on motherboard

+ 3x1TB SATA Il Enterprise Hard Drive (single disk, WDC WD1003FBYX-01Y7B0)
Client:

+ Quad-Core Intel E5507 2.26G/4MB/800

« Mellanox ConnectX 6 QDR Infiniband 40Gbps Controller (MTS3600Q-1BNC)

« 12GB DDRS3 1333MHz E/R memory
Network:

« Infiniband between all the nodes: MTS3600Q managed QDR switch with 36 ports.

Test Methodology

The following tools will be used to provide a production-like load. Performance of the MDS
will be measured using LNet selftest and mdtest.

1. LNet selftest

* In-order to generate a suitable load, high "concurrency" is required on the client side. High
concurrency in this environment is measured as over one thousand RPCs from 16 clients.

2. mdtest

« Multiple mounts on each client.
- Each thread works under a private mount.
« Sufficient workload for "shared directory" is achievable because target directory has
separate inode for each mount on client.

Test File System Configuration
- 16 Clients, each with 48+ threads.
« 1 MDS, 3 0SS (6 OSTs on each OSS).
- Test repeated three times. Mean values are recorded.
« Test completed with both Lustre 2.2 and Lustre-Master.




Mdtest file creation performance (Total 256K files)

e Iterateoverl, 2,4, 6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 creation performance is about 400%+ of 2.2

256K files, 48 mounts per client (dir-per-thread, opencreate + close)
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e Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory. 2.3 is also tested with turning off PDO.
o 2.3 creation performance is about 350%+ of 2.2
o Turning off PDO, shared-directory creation performance of 2.3 is similar to 2.2

256K files, 48 mounts per client (shared-dir, opencreate + close)
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mdtest file creation performance (Total 1 million files)

e Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 creation performance is about 370%+ of 2.2

1M files, 48 mounts per client (dir-per-thread, opencreate + close)
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e Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory.
o 2.3 creation performance is about 350%+ of 2.2

1M files, 48 mounts per client (shared-dir, opencreate + close)
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mdtest file removal performance (Total 256K files)
e [Iterateoverl, 2,4, 6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 file unlink performance is 250-300% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount

256K files, 48 mounts per client (dir-per-thread, file unlink)
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e [Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory. 2.3 is also tested with turning off PDO.
o 2.3 file unlink performance is 250-300% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount
o Turning off PDO, shared-directory unlink performance of 2.3 is even lower than 2.2, it’s
probably because there’re more contention on ldiskfs dir mutex in 2.3.

256K files, 48 mounts per client (shared-directory, file unilnk)
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mdtest file removal performance (Total 1 million files)

e [Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 file unlink performance is 100-250% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount

1M files, 48 mounts per client (dir-per-thread, file unlink)
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e Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory.
o 2.3 file unlink performance is 100-250% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount
1M files, 48 mounts per client (shared-dir, file unlink)
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mdtest file stat performance (Total 256K files)

e Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 file stat performance is 300-400% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount

256K files, 48 mounts per client (dir-per-thread, file stat)
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e Iterateover 1, 2,4, 6,8, 12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory.
o 2.3 file stat performance is 250% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount

256K files, 48 mounts per client (shared-dir, file stat)

250000
=&—2.2 (0-stripe)
== 2.2 (1-stripe)
200000 =d=2.2 (2-stripe)
=>¢=2.2 (4-stripe)
150000 #e=2.3 (0-stripe)

=®=2.3 (1-stripe)

I0Ps/sec

2.3 (2-stripe)
2.3 (4-stripe)

100000

0 T T T T T T T T 1
48 96 192 288 384 480 576 672 768
Number of client threads




mdtest file stat performance (Total 1 million files)

e [Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 file stat performance is 400% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount

c 1M files, 48 mounts per client (dir-per-thread, file stat)
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e Iterateoverl, 2,4, 6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory.
o 2.3 file stat performance is 250-300% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount
1M files, 48 mounts per client (shared-dir, file stat)
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mdtest single client with multi-mount performance

* Single client, iterates over 2, 4, 8, 12, 16, 20, 24, 28, 32 threads. Each thread is running under a
private mount and has a private working directory. File stripecount is always 1.
o 2.3 file creation performance from a single client (multi-mount) is 30% better than 2.2
o 2.3 file stat performance from a single client (multi-mount) is similar to 2.2
o 2.3 file unlink performance from a single client (multi-mount) is 15% worse than 2.2,
we don’t know the reason yet.

256K files, 1 client, dir-per-thread, 256K files, 1 client, dir-per-thread,
opencreate + close file stat
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NB:
1. One thread case is not in the graph because patch mdtest (to support multi-mount) has a bug

which failed one thread tests.



LNet Selftest performance
* Run “ping” and 4K brw read/write of LNet selftest
e Iterateoverl,2,4,6,8,10,12, 14, 16 clients, each client has 64 concurrencies (logic thread)
e Portal Round-Robin, it'’s a new thing in 2.3 LNet
o LNet peers are hashed to CPT (CPU partitions) by NID
o Portal RR (Round-Robin) is OFF
LND threads will fill incoming requests in buffers posted on local CPT, and deliver
them to upper layer threads on local CPT (LNet selftest service threads, or ptlrpc
service threads). If NID is not evenly distribute by hash(i.e: small site w/o0 enough
clients), then it’s not good for CPU load balancing on MDS.
o Portal RR (Round-Robin) is ON
LND threads will round-robin use buffers on all CPTs to receive incoming requests, and
deliver them to upper layer service threads that are running on CPT the buffer
belonging.
e Portal Round-Robin, it's a new thing in 2.3 LNet
o 2.3 4Kread & write performance is 600%-700% of 2.2 while turning off Portal RR
o 2.3 4Kread & write is 500% of 2.2 while turning on Portal RR
o 2.3 pingis 900% of 2.2 with Portal RR-OFF, 600% of 2.2 with Portal RR-ON
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client) client)
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LNet selftest single client performance

* Run LNet selftest with a single client, iterate [1, 2, 4, 8, 16, 24, 32, 40, 48, 64] concurrency
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Performance tests for different CPT configurations

MDS has two six-core processors (2 HTs each core), which presents 24 CPUs in Linux. It’s tested with
these configurations:

* Portal RR-OFF

o 2.2,Itdoesn’t support Portal RR or CPT

o 2.3 (1cpt, 1:1)
One CPT which contains all CPUs, LNet (LND) and ptlrpc service are both running on this CPT

o 2.3 (4cpts, 4:4, rr-off)
4 CPTs, each CPT contains 3 cores (6 HTs), LNet (LND) and ptlrpc service are both running on all
CPTs, LND threads always deliver requests to ptlrpc service threads on local CPT

o 2.3 (6cpts, 6:6, rr-off)
6 CPTs, each CPT contains 2 cores (4 HTs), LNet (LND) and ptlrpc service are both running on
all CPTs, LND threads always deliver requests to ptlrpc service threads on local CPT

o 2.3 (12cpts, 12:12, rr-off)
12 CPTs, each CPT contains 1 cores (2 HTs), LNet (LND) and ptlrpc service are both running on
all CPTs, LND threads always deliver requests to ptlrpc service threads on local CPT

* Portal RR-ON
o 2.3 (2cpts, 2:2 rr-on)
2 CPTs, each CPT contains 6 cores (12 HTs), LNet (LND) and ptlrpc service are both running
on all CPTs, LND threads will round-robin deliver request to ptlrpc service threads on all CPTs
2.3 (4cpts, 4:4 rr-on)
4 CPTs, each CPT contains 3 cores (6 HTs), LNet (LND) and ptlrpc service are both running on
all CPTs, LND threads will round-robin deliver request to ptlrpc service threads on all CPTs
2.3 (4cpts, 1:3)
4 CPTs, each CPT contains 3 cores (6 HTs), LNet (LND) is running on 1 CPT, ptlrpc service is
running on the other 3 CPTs, LND threads will round-robin deliver request to ptlrpc service
threads on those three CPTs
2.3 (4cpts, 2:2)
4 CPTs, each CPT contains 3 cores (6 HTs), LNet (LND) is running on 2 CPTs, ptlrpc service is
running on the rest 2 CPTs, LND threads will round-robin deliver request to ptlrpc service
threads on those 2 CPTs
2.3 (6cpts, 6:6, rr-on)
4 CPTs, each CPT contains 2 cores (4 HTs), LNet (LND) and ptlrpc service are both running on
all CPTs, LND threads will round-robin deliver request to ptlrpc service threads on all CPTs
2.3 (6cpts, 2:4, rr-on)
6 CPTs, each CPT contains 2 cores (4 HTs), LNet (LND) is running on 2 CPTs, ptlrpc service is
running on the other 4 CPTs, LND threads will round-robin deliver request to ptlrpc service
threads on those 4 CPTs
2.3 (12cpts, 12:12, rr-on)
12 CPTs, each CPT contains 1 cores (2HTs), LNet (LND) and ptlrpc service are both running on
all CPTs, LND threads will round-robin deliver request to ptlrpc service threads on all CPTs
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Mdtest share-directory file creation performance for different CPT configurations

e Total 256K files

* Iterate over 1, 2,4, 6,8, 12, 16 clients, each client has 32 threads, each thread is running under a
private mount, all threads share a target directory
* 4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server

* Turning on Portal RR gives a little better performance
* 2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

* Performance of 2.3 with single CPT is worse than 2.3 with multiple CPTs.

shared-dir opencreate + close (RR-OFF)
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Mdtest directory-per-thread file creation performance for different CPT configurations

e Total 256K files

* Iterate over 1, 2,4, 6,8, 12, 16 clients, each client has 32 threads, each thread is running under a

private mount and has a private working directory.
* 4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server

* Turning on Portal RR gives a little better performance
* 2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

* Performance of 2.3 with single CPT is worse than 2.3 with multiple CPTs.

dir-per-thread opencreate + close (RR-OFF)
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dir-per-thread opencreate + close (RR-ON)
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Mdtest shared-directory file removal performance for different CPT configurations

e Total 256K files

* Iterate over 1, 2,4, 6,8, 12, 16 clients, each client has 32 threads, each thread is running under a
private mount, all threads share a target directory
* 4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server

* Turning on/off Portal RR give similar performance
* 2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

* Performance of 2.3 with single CPT is worse than 2.3 with multiple CPTs.
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Mdtest directory-per-thread file removal performance for different CPT configurations

Total 256K files

[terate over 1, 2, 4, 6, 8, 12, 16 clients, each client has 32 threads, each thread is running under a

private mount and has a private working directory.

4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server
Turning on/off Portal RR give similar performance

2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2
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Mdtest shared-directory file stat performance for different CPT configurations

e Total 256K files

* Iterate over 1, 2,4, 6,8, 12, 16 clients, each client has 32 threads, each thread is running under a
private mount, all threads share a target directory
* 4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server

* Turning on/off Portal RR give similar performance
* 2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

* Performance of 2.3 with single CPT is worse than 2.3 with multiple CPTs.
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Mdtest directory-per-thread file stat performance for different CPT configurations

Total 256K files

[terate over 1, 2, 4, 6, 8, 12, 16 clients, each client has 32 threads, each thread is running under a

private mount and has a private working directory.

4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server
Turning on/off Portal RR give similar performance

2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

Performance of 2.3 with single CPT is worse than 2.3 with multiple CPTs.
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