Revision History

Final Report for the

SMP Node Affinity Sub-project of the
Single Metadata Server Performance
Improvements of the
SFS-DEV-001 contract.

Date

Revision

Author

10/02/12

Original

R. Henwood




Contents

Faka goTo [¥ ot d To ] o F PP PRPTRPRN
PerfOrmManCe BaselinNe. . ...
TeSt MethOdOIOgY . .uiv it

LNEt SISt e

0 = P
Summary of DemONSTratioN. ...
Code AVAIlabilitY . e
Appendix 1: Detailed Demonstration ReSUltS........ccoviiiiiiii



Introduction

This document describes demonstration of sub-project 2.1 - SMP Node Affinity -
within the OpenSFS Lustre Development contract SFS-DEV-001 signed 7/30/2011.

The SMP Node Affinity code is functionally complete. The purpose of this Milestone
is to verify that the code performs acceptably in a production-like environment. In
addition to achieving the Acceptance Criteria (recorded in the SMP Node Affinity
Solution Architecture), SMP Node Affinity Performance will be measured as
described below.

Performance Baseline

SMP Node Affinity code delivers a performance enhancement on multi-core MDSs.
To demonstrate the completion of the SMP Node Affinity goals, a baseline
performance is established to compare against. The baseline is chosen as Lustre
2.2.

SMP Node Affinity code arrived in Master as a series of 45 change-sets, containing
over 14K LOC. These changes arrived over a six week period. Performance
measurements are made with a Lustre build that includes the SMP Node Affinity
patches as of July 1st 2012. The version of Lustre with SMP Node Affinity enabled
is known in this document as Lustre 2.3.

Test Methodology

The following tools will be used to provide a production-like load. Performance of
the MDS will be measured using Lnet selftest and mdtest.

Lnet selftest

In-order to generate a suitable load, high concurrency is required on the client
side. High concurrency in this environment is measure as over one thousand
RPCs/second from 16 clients.

mdtest
Multiple mounts on each client
* Each thread operates on a individual mount.

+ Sufficient workload for shared directory is achieved because the target
directory has a separate inode for each mount on the client.

Summary of Demonstration

SMP Node Affinity patches display a significant speed-up in all meta-data
operations.



100000

90000

BO0O0O0D

70000

60000

s0000

I0Ps/sec

40000

30000

20000

10000

0

1M files, 48 mounts per client (dir-per-thread, opencreate + close)

96 192 288 384 480 276 672 768

Number of client threads

=822 (0-stripe)
=22 (1-stripe)
=322 (2-stripe)
w2 2 (4-stripe)
=#e=32.3 (0-stripe)
==2.3 (1-stripe)

2.3 (2-stripe)

2.3 (4-stripe)

The figure above illustrates the performance enhancement for one example case:
create a new file with an increasing a number of clients.

Code Availability
Code with SMP Node Affinity patches applied is available as Lustre Master:

http://git.whamcloud.com/?p=fs/lustre-release.qgit:a=summary



http://git.whamcloud.com/?p=fs/lustre-release.git;a=summary

Appendix 1: Detailed Demonstration Results



OPENSFS SMP NODE AFFINITY DEMONSTRATION

Liang Zhen (liang.zhen@intel.com)

Hardware

MDS node:

« 2 x Intel Xeon(R) X5650 2.67GHz Six-core Processor (2-HT each core), which will present
as 24 CPUs on Linux

- 24GB DDR3 1333MHz Memory

« 2PT 40Gb/s 4X QSFP InfiniBand adapter card (Mellanox MT26428)

- 1 QDR IB port on motherboard

« SSD as external journal device (INTEL SSDSA2CW120G3), SATA Il Enterprise Hard Drive
as MDT (single disk, WDC WD2502ABYS-02B7A0)

« 2 x AMD Opteron 6128 2.0GHz Eight-Core Processor

- 16GB DDR3 1333MHz Memory

« 2PT 40Gb/s 4X QSFP InfiniBand adapter card (Mellanox MT26428)

- 1 QDR IB port on motherboard

+ 3x1TB SATA Il Enterprise Hard Drive (single disk, WDC WD1003FBYX-01Y7B0)
Client:

+ Quad-Core Intel E5507 2.26G/4MB/800

« Mellanox ConnectX 6 QDR Infiniband 40Gbps Controller (MTS3600Q-1BNC)

« 12GB DDRS3 1333MHz E/R memory
Network:

« Infiniband between all the nodes: MTS3600Q managed QDR switch with 36 ports.

Test Methodology

The following tools will be used to provide a production-like load. Performance of the MDS
will be measured using LNet selftest and mdtest.

1. LNet selftest

* In-order to generate a suitable load, high "concurrency" is required on the client side. High
concurrency in this environment is measured as over one thousand RPCs from 16 clients.

2. mdtest

« Multiple mounts on each client.
- Each thread works under a private mount.
« Sufficient workload for "shared directory" is achievable because target directory has
separate inode for each mount on client.

Test File System Configuration
- 16 Clients, each with 48+ threads.
« 1 MDS, 3 0SS (6 OSTs on each OSS).
- Test repeated three times. Mean values are recorded.
« Test completed with both Lustre 2.2 and Lustre-Master.




Mdtest file creation performance (Total 256K files)

e Iterateoverl, 2,4, 6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 creation performance is about 400%+ of 2.2

256K files, 48 mounts per client (dir-per-thread, opencreate + close)
100000
=&—2.2 (0-stripe)

90000
=—2.2 (1-stripe)
A

80000 /‘/ ==2.2 (2-stripe)
70000 w A —=2.2 (4-stripe)
- - -

g 60000 ' V %=2.3 (0-stripe)
2
E 50000 - , =0=2.3 (1-stripe)
=) 40000 - : 2.3 (2-stripe)

30000 2.3 (4-stripe)

20000 _TA; e < ————"C >

e e S
10000
O T T T T T T T T 1

48 96 192 288 384 480 576 672 768
Number of client threads

e Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory. 2.3 is also tested with turning off PDO.
o 2.3 creation performance is about 350%+ of 2.2
o Turning off PDO, shared-directory creation performance of 2.3 is similar to 2.2

256K files, 48 mounts per client (shared-dir, opencreate + close)

100000 =&—2.2 (0-stripe)
90000 = 2.2 (1-stripe)
80000 =i=2.2 (2-stripe)

70000 W:’% =>¢=2.2 (4-stripe)
60000 ’ e

§ =#=2.3 (0-stripe)

g 50000 =®-2.3 (1-stripe)

~ 40000 2.3 (2-stripe)
30000 2.3 (4-stripe)
20000 2.3 (0-stripe,
10000 pdo-off)

48 96 192 288 384 480 576 672 768
Number of client threads




mdtest file creation performance (Total 1 million files)

e Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 creation performance is about 370%+ of 2.2

1M files, 48 mounts per client (dir-per-thread, opencreate + close)

100000
—— _otri
90000 2.2 (0-stripe)
=—2.2 (1-stripe)
80000

“=d=2.2 (2-stripe)
70000 =>¢=2.2 (4-stripe)

N ’
o 60000 %ﬁw\cﬁq— %—2.3 (0-stripe)
0 e o =
% 50000 7 / ~®-2.3 (1-stripe)
A
=] 2.3 (2-stripe)
40000 4
¢ 2.3 (4-stripe)
30000

20000 > *—e >—

10000

0 T T T T T T T 1
96 192 288 384 480 576 672 768

Number of client threads

e Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory.
o 2.3 creation performance is about 350%+ of 2.2

1M files, 48 mounts per client (shared-dir, opencreate + close)

100000
=9—2.2 (0-stripe)
90000 =l—2.2 (1-stripe)
80000 ==2.2 (2-stripe)
=>¢=2.2 (4-stripe)
70000 =#=2.3 (0-stripe)
g 60000 =®-2.3 (1-stripe)
E 50000 2.3 (2-stripe)
S) 2.3 (4-stripe)
~ 40000
30000
20000
10000
O T T T T T T T 1

96 192 288 384 480 576 672 768

Number of client threads




mdtest file removal performance (Total 256K files)
e [Iterateoverl, 2,4, 6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 file unlink performance is 250-300% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount

256K files, 48 mounts per client (dir-per-thread, file unlink)
=&—2.2 (0-stripe)
= 2.2 (1-stripe)
80000 ~#&—2.2 (2-stripe)

100000

90000

70000 —>¢=2.2 (4-stripe)
g 60000 T ==#¢=2.3 (0-stripe)
@
E 50000 =®=2.3 (1-stripe)
2 40000 2.3 (2-stripe)

30000 i — e — ] 2.3 (4-stripe)

20000 —— -

10000

0 T T T T T T T T )

48 96 192 288 384 480 576 672 768
Number of client threads

e [Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory. 2.3 is also tested with turning off PDO.
o 2.3 file unlink performance is 250-300% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount
o Turning off PDO, shared-directory unlink performance of 2.3 is even lower than 2.2, it’s
probably because there’re more contention on ldiskfs dir mutex in 2.3.

256K files, 48 mounts per client (shared-directory, file unilnk)

100000 —6—2.2 (0-stripe)
X
90000
MA\ /‘\K =—2.2 (1-stripe)
80000 N’
/ / == 2.2 (2-stripe)
70000 / /f\\ /
=>¢=2.2 (4-stripe)
g 60000 / / s
@ —¥=2.3 (0-stri
& 50000 1 (0-stripe)
30000 y — 2.3 (2-stripe)
20000 _xy7 e —_— 2.3 (4-stripe)
10000 2.3 (0-stripe,
0 pdo-off)

48 96 192 288 384 480 576 672 768
Number of client threads




mdtest file removal performance (Total 1 million files)

e [Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 file unlink performance is 100-250% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount

1M files, 48 mounts per client (dir-per-thread, file unlink)
100000
=&—2.2 (0-stripe)
90000 =l—2.2 (1-stripe)
80000 W\f’ 2.2 (2-stripe)
70000 / N 2.2 (4-stripe)

o 60000 > ¢ =#=2.3 (0-stripe)

3 =@=2.3 (1-stripe)

& 50000 _

S / 2.3 (2-stripe)
40000 2.3 (4-stripe)
30000 - M
20000 — < N
10000

0 T T T T T T T 1
96 192 288 384 480 576 672 768
Number of client threads
e Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory.
o 2.3 file unlink performance is 100-250% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount
1M files, 48 mounts per client (shared-dir, file unlink)
100000
=&—2.2 (0-stripe)
90000 =—2.2 (1-stripe)
80000 — e X —4—2.2 (2-stripe)
70000 / 2.2 (4-stripe)

2 ,0——0/‘\0/.—‘ «0—2.3 (1-stri

E 50000 2.3 (1-stripe)

o

/ 2.3 (2-stripe)
#0000 ./ 2.3 (4-stripe)
30000 —MA\T‘

20000 — —

10000

0 T T T T T T T 1
96 192 288 384 480 576 672 768

Number of client threads




mdtest file stat performance (Total 256K files)

e Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 file stat performance is 300-400% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount

256K files, 48 mounts per client (dir-per-thread, file stat)
250000
=&—2.2 (0-stripe)
=—2.2 (1-stripe)
200000 == 2.2 (2-stripe)
=>¢=2.2 (4-stripe)
g 150000 #e=2.3 (0-stripe)
Z
E =0=2.3 (1-stripe)
S 100000 2.3 (2-stripe)
2.3 (4-stripe)
50000 -
O T T T T T T T T 1
48 96 192 288 384 480 576 672 768
Number of client threads

e Iterateover 1, 2,4, 6,8, 12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory.
o 2.3 file stat performance is 250% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount

256K files, 48 mounts per client (shared-dir, file stat)

250000
=&—2.2 (0-stripe)
== 2.2 (1-stripe)
200000 =d=2.2 (2-stripe)
=>¢=2.2 (4-stripe)
150000 #e=2.3 (0-stripe)

=®=2.3 (1-stripe)

I0Ps/sec

2.3 (2-stripe)
2.3 (4-stripe)

100000

0 T T T T T T T T 1
48 96 192 288 384 480 576 672 768
Number of client threads




mdtest file stat performance (Total 1 million files)

e [Iterateover 1,2, 4,6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount and has a private working directory.
o 2.3 file stat performance is 400% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount

c 1M files, 48 mounts per client (dir-per-thread, file stat)
250000
=&—2.2 (0-stripe)
5 E//.__K\ ; ﬁ =—2.2 (1-stripe)
200000 —— —A—2.2 (2-stripe)
=>¢=2.2 (4-stripe)
=#=2.3 (0-stripe)
g 150000 ~®-2.3 (1-stripe)
> 2.3 (2-stripe)
g 2.3 (4-stripe)
= 100000
50000 4/—'
=
O T T T T T T T 1
96 192 288 384 480 576 672 768
Number of client threads
e Iterateoverl, 2,4, 6, 8,12, 16 clients, each client has 48 threads, each thread is running under
a private mount, all threads share a target directory.
o 2.3 file stat performance is 250-300% of 2.2 (depends on stripecount)
o Lustre client needs to send RPC for each OST object, that’s the reason that performance
will drop while increasing file stripecount
1M files, 48 mounts per client (shared-dir, file stat)
250000
=&—2.2 (0-stripe)
=—2.2 (1-stripe)
200000 =i=2.2 (2-stripe)
=>¢=2.2 (4-stripe)
=#=2.3 (0-stripe)
§ 150000 - . =023 (1-str%pe)
> 2.3 (2-stripe)
8 2.3 (4-stripe)
= 100000
50000 - —A’m—
=
0 T T T T T T T 1

96 192 288 384 480 576 672 768

Number of client threads




mdtest single client with multi-mount performance

* Single client, iterates over 2, 4, 8, 12, 16, 20, 24, 28, 32 threads. Each thread is running under a
private mount and has a private working directory. File stripecount is always 1.
o 2.3 file creation performance from a single client (multi-mount) is 30% better than 2.2
o 2.3 file stat performance from a single client (multi-mount) is similar to 2.2
o 2.3 file unlink performance from a single client (multi-mount) is 15% worse than 2.2,
we don’t know the reason yet.

256K files, 1 client, dir-per-thread, 256K files, 1 client, dir-per-thread,
opencreate + close file stat
30000 30000
25000 ’_./Fﬂq 25000
20000 20000 /
=] 1>
"] ]
(2] 2]
15000 & 15000
=% A
e e /

10000 / 10000

5000 { 5000 '/
0 T T T T T T T T 1 O T T T T T T T T 1
2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32

Number of threads —22 =23 Number of threads  _, 22 =223

256K files, 1 client, dir-per-thread, file
unlink

,/0——0-—0—0-—0

30000

25000

20000

15000

I0Ps/sec

10000

5000 -

0 T T T T T T T T 1
2 4 8 12 16 20 24 28 32

Number of threads _,_,, _g -3

NB:
1. One thread case is not in the graph because patch mdtest (to support multi-mount) has a bug

which failed one thread tests.



LNet Selftest performance
* Run “ping” and 4K brw read/write of LNet selftest
e Iterateoverl,2,4,6,8,10,12, 14, 16 clients, each client has 64 concurrencies (logic thread)
e Portal Round-Robin, it'’s a new thing in 2.3 LNet
o LNet peers are hashed to CPT (CPU partitions) by NID
o Portal RR (Round-Robin) is OFF
LND threads will fill incoming requests in buffers posted on local CPT, and deliver
them to upper layer threads on local CPT (LNet selftest service threads, or ptlrpc
service threads). If NID is not evenly distribute by hash(i.e: small site w/o0 enough
clients), then it’s not good for CPU load balancing on MDS.
o Portal RR (Round-Robin) is ON
LND threads will round-robin use buffers on all CPTs to receive incoming requests, and
deliver them to upper layer service threads that are running on CPT the buffer
belonging.
e Portal Round-Robin, it's a new thing in 2.3 LNet
o 2.3 4Kread & write performance is 600%-700% of 2.2 while turning off Portal RR
o 2.3 4Kread & write is 500% of 2.2 while turning on Portal RR
o 2.3 pingis 900% of 2.2 with Portal RR-OFF, 600% of 2.2 with Portal RR-ON

LNet selftest 4K read (64 concur per LNet selftest 4K write (64 concur per
client) client)
2500 2500
2000 2000 1
g 1500 g 1500
(] (%]
~ ~
E 1000 /.,.—.—I—._. E 1000 7 -/.’. —a—a
p S
500 = 500 +—p°
HM *—ﬁ+*—‘—H—.——‘
0 T T T T T T T T 1 0 T T T T T T T T 1
1 2 4 6 8 10 12 14 16 1 2 4 6 8 10 12 14 16
Number of clients Number of clients
=422 =23 (RRon) 2.3 (RR off) ~¢—22 =#-23(RRon) 2.3 (RR off)
LNet selftest PING (64 concurrency per
client)
1000000
900000 —
800000
700000
8600000 —= S —
5500000
400000
300000
200000 ¥
100000 '7&4—*—0—0—0-#—
0 T T T T T T T T 1
1 2 4 6 8 10 12 14 16
Number of clients
=6—2.2 =823 (RRon) 2.3 (RR off)




LNet selftest single client performance

* Run LNet selftest with a single client, iterate [1, 2, 4, 8, 16, 24, 32, 40, 48, 64] concurrency

single client LST 4K read

500

400

MB / sec

100

” W
. W’

4 8 16 24 32 40 48 64

Number of threads

—4—22 —8-23(RRon) ~#*—2.3 (RR off)

MB / sec

single client LST 4K write

) Al

500

400

300

200

100

0 11T T 71T 71
1 2 4 8 16 24 32 40 48 64

Number of threads

—4—22 =823 (RRon) —*—2.3 (RR off)

single client LST ping

250000

200000

150000

RPC / sec

100000

50000

4 8 16 24 32 40 48 64

Number of threads

—4—22 =823 (RRon) ~#*—2.3 (RR off)




Performance tests for different CPT configurations

MDS has two six-core processors (2 HTs each core), which presents 24 CPUs in Linux. It’s tested with
these configurations:

* Portal RR-OFF

o 2.2,Itdoesn’t support Portal RR or CPT

o 2.3 (1cpt, 1:1)
One CPT which contains all CPUs, LNet (LND) and ptlrpc service are both running on this CPT

o 2.3 (4cpts, 4:4, rr-off)
4 CPTs, each CPT contains 3 cores (6 HTs), LNet (LND) and ptlrpc service are both running on all
CPTs, LND threads always deliver requests to ptlrpc service threads on local CPT

o 2.3 (6cpts, 6:6, rr-off)
6 CPTs, each CPT contains 2 cores (4 HTs), LNet (LND) and ptlrpc service are both running on
all CPTs, LND threads always deliver requests to ptlrpc service threads on local CPT

o 2.3 (12cpts, 12:12, rr-off)
12 CPTs, each CPT contains 1 cores (2 HTs), LNet (LND) and ptlrpc service are both running on
all CPTs, LND threads always deliver requests to ptlrpc service threads on local CPT

* Portal RR-ON
o 2.3 (2cpts, 2:2 rr-on)
2 CPTs, each CPT contains 6 cores (12 HTs), LNet (LND) and ptlrpc service are both running
on all CPTs, LND threads will round-robin deliver request to ptlrpc service threads on all CPTs
2.3 (4cpts, 4:4 rr-on)
4 CPTs, each CPT contains 3 cores (6 HTs), LNet (LND) and ptlrpc service are both running on
all CPTs, LND threads will round-robin deliver request to ptlrpc service threads on all CPTs
2.3 (4cpts, 1:3)
4 CPTs, each CPT contains 3 cores (6 HTs), LNet (LND) is running on 1 CPT, ptlrpc service is
running on the other 3 CPTs, LND threads will round-robin deliver request to ptlrpc service
threads on those three CPTs
2.3 (4cpts, 2:2)
4 CPTs, each CPT contains 3 cores (6 HTs), LNet (LND) is running on 2 CPTs, ptlrpc service is
running on the rest 2 CPTs, LND threads will round-robin deliver request to ptlrpc service
threads on those 2 CPTs
2.3 (6cpts, 6:6, rr-on)
4 CPTs, each CPT contains 2 cores (4 HTs), LNet (LND) and ptlrpc service are both running on
all CPTs, LND threads will round-robin deliver request to ptlrpc service threads on all CPTs
2.3 (6cpts, 2:4, rr-on)
6 CPTs, each CPT contains 2 cores (4 HTs), LNet (LND) is running on 2 CPTs, ptlrpc service is
running on the other 4 CPTs, LND threads will round-robin deliver request to ptlrpc service
threads on those 4 CPTs
2.3 (12cpts, 12:12, rr-on)
12 CPTs, each CPT contains 1 cores (2HTs), LNet (LND) and ptlrpc service are both running on
all CPTs, LND threads will round-robin deliver request to ptlrpc service threads on all CPTs

O

O

O

(@]

(@]

(@]



Mdtest share-directory file creation performance for different CPT configurations

e Total 256K files

* Iterate over 1, 2,4, 6,8, 12, 16 clients, each client has 32 threads, each thread is running under a
private mount, all threads share a target directory
* 4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server

* Turning on Portal RR gives a little better performance
* 2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

* Performance of 2.3 with single CPT is worse than 2.3 with multiple CPTs.

shared-dir opencreate + close (RR-OFF)

100000
90000
80000
70000
60000
(5]
Q
172}
£50000 -
= /\.
40000 3
30000 7/%
20000 { I{
10000 y
O T T T T T T T T
32 64 128 192 256 320 384 448 512
Number of client threads
——2.2 =23 (1cpt, 1:1)

2.3 (4cpts, 4:4, rr-off)
=H=2.3 (12cpts, 12:12, rr-off)

=>¢=2.3 (6¢pts, 6:6, rr-off)

shared-dir opencreate + close (RR-ON)

100000

90000

80000

70000

60000

50000

I0Ps/sec

40000

30000

20000

10000

0 T T T T T T T T
32 64 128 192 256 320 384 448 512

Number of client threads
=0—2.3 (2cpts, 2:2, rr-on)
=i=2.3 (4cpts, 1:3)
=#=2.3 (6¢pts, 6:6, rr-on)

2.3 (12cpts, 12:12, rr-on)

=—2.3 (4cpts, 4:4, rr-on)
=>¢=2.3 (4cpts, 2:2)
=0=2.3 (6¢cpts, 2:4)




Mdtest directory-per-thread file creation performance for different CPT configurations

e Total 256K files

* Iterate over 1, 2,4, 6,8, 12, 16 clients, each client has 32 threads, each thread is running under a

private mount and has a private working directory.
* 4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server

* Turning on Portal RR gives a little better performance
* 2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

* Performance of 2.3 with single CPT is worse than 2.3 with multiple CPTs.

dir-per-thread opencreate + close (RR-OFF)

100000

90000

80000

70000

60000 ]

0000 -

IOPg/sec

40000

30000

20000

10000

0 T T T T T T T T
32 64 128 192 256 320 384 448 512

Number of client threads

2.2
2.3 (4cpts, 4:4, rr-off)
=#=2.3 (12cpts, 12:12, rr-off)

823 (lcpt, 1:1)
=>=2.3 (6¢pts, 6:6, rr-off)

dir-per-thread opencreate + close (RR-ON)

100000

90000

80000

70000

60000

0000

IOPg{sec

40000

30000

20000

10000

0 T T T T T T T T
32 64 128 192 256 320 384 448 512

Number of client threads
=—2.3 (4cpts, 4:4, rr-on)

=>¢=2.3 (4cpts, 2:2)
=0-2.3 (6¢pts, 2:4)

=0—2.3 (2cpts, 2:2, rr-on)
=#=2.3 (4cpts, 1:3)
=#=2.3 (6¢pts, 6:6, rr-on)

2.3 (12cpts, 12:12, rr-on)




Mdtest shared-directory file removal performance for different CPT configurations

e Total 256K files

* Iterate over 1, 2,4, 6,8, 12, 16 clients, each client has 32 threads, each thread is running under a
private mount, all threads share a target directory
* 4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server

* Turning on/off Portal RR give similar performance
* 2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

* Performance of 2.3 with single CPT is worse than 2.3 with multiple CPTs.

shared-dir file unlink (RR-OFF)

100000

90000

80000

o

70000

60000

50000

I0Ps/sec

40000

30000 -

4

20000

d

10000

0 T T T T T T T T
32 64 128 192 256 320 384 448 512

Number of client threads

——22 823 (1cpt, 1:1)

2.3 (4cpts, 4:4, rr-off) =>¢=2.3 (6¢pts, 6:6, rr-off)

=#=2.3 (12cpts, 12:12, rr-off)

shared-dir file unlink (RR-ON)

100000

90000

_»

80000

70000

60000

17 "

50000

I0Ps/sec

40000

30000

20000 -

10000

0 T T T T T T T T
32 64 128 192 256 320 384 448 512

Number of client threads
=0—2.3 (2cpts, 2:2, rr-on)
==2.3 (4cpts, 1:3)

=—2.3 (4cpts, 4:4, rr-on)
=>=2.3 (4cpts, 2:2)
=#=2.3 (6cpts, 6:6, rr-0n) =0=2.3 (6¢pts, 2:4)

2.3 (12cpts, 12:12, rr-on)




Mdtest directory-per-thread file removal performance for different CPT configurations

Total 256K files

[terate over 1, 2, 4, 6, 8, 12, 16 clients, each client has 32 threads, each thread is running under a

private mount and has a private working directory.

4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server
Turning on/off Portal RR give similar performance

2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

100000

90000

80000

70000

60000

50000

I0OPs/sec

40000

30000

20000

10000

0

——2.2

2.3 (4cpts, 4:4, rr-off)

=23 (

dir-per-thread file unlink (RR-OFF)

100000
90000
A 80000
| 70000
r— g

60000

(5]

3]

T 4
& 50000

(=

N :
40000
/” / 30000
)(/, 20000
10000
T T T T T T T T 0

32 64 128 192 256 320 384 448 512

Number of client threads

=23 (1cpt, 1:1)
=>¢=2.3 (6¢pts, 6:6, rr-off)
12cpts, 12:12, rr-off)

dir-per-thread file unlink (RR-ON)

B

)/i

=0—2.3 (2cpts, 2:2, rr-on)
=#=2.3 (4cpts, 1:3)
=#=2.3 (6¢pts, 6:6, rr-on)

2.3 (12cpts, 12:12, rr-on)

32 64 128 192 256 320 384 448 512

Number of client threads
=23 (4cpts, 4:4, rr-on)

=>¢=2.3 (4cpts, 2:2)
=@-2.3 (6cpts, 2:4)




Mdtest shared-directory file stat performance for different CPT configurations

e Total 256K files

* Iterate over 1, 2,4, 6,8, 12, 16 clients, each client has 32 threads, each thread is running under a
private mount, all threads share a target directory
* 4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server

* Turning on/off Portal RR give similar performance
* 2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

* Performance of 2.3 with single CPT is worse than 2.3 with multiple CPTs.

shared-dir file stat (RR-OFF)

250000

200000

150000
(5]
[F]
(7]
S~
[7]
A
e

100000

50000 -

0 T T T T T T T T
32 64 128 192 256 320 384 448 512
Number of client threads

=22 =23 (1cpt, 1:1)

2.3 (4cpts, 4:4, rr-off)
=#=2.3 (12cpts, 12:12, rr-off)

=>¢=2.3 (6¢pts, 6:6, rr-off)

shared-dir file stat (RR-ON)

250000

200000

150000

I0Ps/sec

50000

0 T T T T T T T T
32 64 128 192 256 320 384 448 512

Number of client threads
=—2.3 (2cpts, 2:2, rr-on)
=#=2.3 (4cpts, 1:3)
=#=2.3 (6¢pts, 6:6, rr-on)

=—2.3 (4cpts, 4:4, rr-on)
=>¢=2.3 (4cpts, 2:2)
=0-2.3 (6cpts, 2:4)

2.3 (12cpts, 12:12, rr-on)




Mdtest directory-per-thread file stat performance for different CPT configurations

Total 256K files

[terate over 1, 2, 4, 6, 8, 12, 16 clients, each client has 32 threads, each thread is running under a

private mount and has a private working directory.

4 CPTs gives the best performance, which is the default value calculated from CPU numbers on

server
Turning on/off Portal RR give similar performance

2.3 generally has much better performance than 2.2, even configured to a single CPT, 2.3

performance is still much better than 2.2

Performance of 2.3 with single CPT is worse than 2.3 with multiple CPTs.

250000

200000

150000

I0Ps/sec

100000

50000

——2.2

dir-per-thread file stat (RR-OFF)
250000
200000
¥ || 150000
2
S~
7]
=%
=
100000
. —— Y 50000
T T T T T T T T 1 O
1 2 3 4 5 6 7 8 9
Number of client threads
=—2.3 (1cpt, 1:1)
2.3 (4cpts, 4:4, rr-off) =>&=2.3 (6¢pts, 6:6, rr-off)
=#=2.3 (12cpts, 12:12, rr-off)

shared-dir file stat (RR-ON)

=0—2.3 (2cpts, 2:2, rr-on)
=i=2.3 (4cpts, 1:3)
=#=2.3 (6¢pts, 6:6, rr-on)

2.3 (12cpts, 12:12, rr-on)

2 3 4 5 6 7 8
Number of client threads
=—2.3 (4cpts, 4:4, rr-on)
=>¢=2.3 (4cpts, 2:2)
=0-2.3 (6¢pts, 2:4)




