
OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

2

SCHEDULE OF ARTICLES

FOR

CONTRACT NO. SFS-DEV-001

ARTICLE 1 – SCOPE OF WORK

A. The Contractor shall perform the OpenSFS Lustre Development further described in the

Statement of Work incorporated in this Contract.

B. The Contractor shall address the projects described herein as well as the milestone-tasks, which

are the units of work, and the milestones and deliverables described in the Milestones &

Deliverables section of this document.

C. The Contractor shall furnish all personnel, supervision, materials, supplies, equipment, tools,

facilities, transportation, testing, and other incidental items and services necessary for

performance of the work. The Contractor shall deliver the materials, products, supplies, reports

and residuals, as specified.

D. Acceptance of the work under this Contract shall be based on the Contractor's performance and

completion of the work in consonance with high professional standards and compliance with the

delivery and reporting requirements specified herein.

Project 1. Single Server Metadata Performance Improvements

Technical Description and Approach

Two major strategies for scaling Lustre metadata throughput are horizontal and vertical scale. Vertical

scaling aims to increase the performance of a single-node server. Horizontal scaling aims to allow

multiple server nodes to collaborate to improve the performance of a single file system. We propose

projects to improve metadata performance addressing both of these areas. This first project is addressed

at improving the vertical scalability of a server by improving software efficiency on existing nodes and

allowing Lustre to take advantage of increasingly more powerful nodes as they become available.

Contractor engineers have put substantial effort into improving vertical scaling of Lustre, demonstrating

significant gains through this approach, and developing considerable expertise in this area. Previous

efforts improved Symmetric Multi-Processing (SMP) scaling for Lustre by reducing lock contention in

the networking and remote procedure call (RPC) layers. However, these improvements cannot be fully

realized while SMP scaling issues in the underlying file system implementation remain.

OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

3

This project consists of two subprojects for improving SMP scaling in the underlying file system as

described below.

Subproject 1.1: SMP Node Affinity

This subproject splits the computing cores available on the Metadata Server (MDS) into a configurable

number of compute partitions, and binds the Lustre RPC service threads to run within a specific

compute partition. This allows the RPC threads to run more efficiently by keeping data structures in

cache memory close to the CPU cores on which they are running, and avoids needless contention on the

inter-CPU memory subsystem. SMP Node Affinity also allows individual RPC requests to stay local to

a specific compute partition, improving overall efficiency throughout the protocol stack as the number

of cores increases.

Subproject 1.2: Parallel Directory Operations

This subproject allows multiple RPC service threads to operate on a single directory without contending

on a single lock protecting the underlying directory in the ldiskfs file system. Single directory

performance is one of the most critical use cases for HPC workloads as many applications create a

separate output file for each task in a job, requiring hundreds of thousands of files to be created in a

single directory within a short window of time. Currently, both filename lookup and file system-

modifying operations such as create and unlink are protected with a single lock for the whole directory.

This subproject will implement a parallel locking mechanism for single ldiskfs directories, allowing

multiple threads to do lookup, create, and unlink operations in parallel. In order to avoid performance

bottlenecks for very large directories, as the directory size increases, the number of concurrent locks

possible on a single directory will also increase.

Technical Debt

The SMP Node Affinity functionality is also useful for removing scalability bottlenecks on Object

Storage Server (OSS) nodes to improve input/output (I/O) efficiency, in addition to the benefits for

MDS nodes. As well, the Parallel Directory Operations can have a substantial performance benefit for

Object Storage Target (OST) file systems, where there are many millions of objects stored on each OST

or in cases of high contention on a small part of the object namespace, due to the fact that the object

namespace is relatively flat.

To avoid an ongoing maintenance burden with the integration of Parallel Directory Operations into the

ldiskfs code, as was experienced with previous work in this area, the new Parallel Directory Operations

code will largely be abstracted from the underlying ldiskfs implementation. While some close

OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

4

integration with the ldiskfs code is required, the goal of this project is on long-term maintainability and

seeks to minimize this boundary.

Project 2. Distributed Namespace: Remote Directories and Striped Directories

Technical Description and Approach

Vertical scale improvements from Project 1 aim to increase the performance of a single-node server.

However, such efforts are subject to diminishing returns due to fundamental architectural constraints of

a single server. A breakthrough in metadata scalability and throughput can be achieved by exploiting

horizontal scale.

Distributed NamespacE (DNE) allows the Lustre namespace to be spread over many metadata servers.

This ensures that both the size of the namespace and metadata throughput can be scaled with the number

of servers. File and directory distribution can also be controlled to reserve and dedicate specific

metadata resources for different sub-trees within the namespace.

This project is split into two subprojects in order to deliver some of the benefits before the full scope of

DNE is implemented and to provide earlier feedback on real-world deployment and administration

issues

Subproject 2.1: Remote Directories

This subproject distributes the Lustre namespace over multiple metadata targets (MDTs) under

administrative control using a Lustre-specific mkdir command. Whereas normal users are only able to

create child directories and files on the same MDT as the parent directory, administrators can use this

command to create a directory on a different MDT. The contents of any directory remain limited to a

single MDT. Rename and hardlink operations between files and directories on different MDTs return

EXDEV, forcing applications and utilities to treat them as if they are on different file systems. This

limits the complexity of the implementation of this subproject while delivering capacity and

performance scaling benefits for the entire namespace in aggregate.

Metadata update operations that span multiple MDTs are sequenced and synchronized to create and/or

increment the link count on an MDT object before it is referenced by the remote directory entry and to

update the remote directory entry before decrementing the link count and/or destroying the MDT object

it referenced. Although this may result in an orphan MDT object under some failure conditions, it

ensures that the Lustre namespace remains intact under any and all failure scenarios. All other metadata

operations avoid synchronous I/O and execute with full performance.

OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

5

This subproject includes the implementation of OST FIDs (File Identifiers). These are required to

overcome a limitation in the current 2.x Lustre protocol that would otherwise prevent a single file

system from having more than 8 MDTs. Addressing this technical debt in the first subproject of DNE

avoids protocol compatibility issues that would arise if this feature were implemented after Remote

Directories were used in production.

Subproject 2.2: Striped Directories

Striped directories allow single directories to be distributed over multiple MDTs under administrative

control to scale both the capacity and throughput of those directories. Distributed operations needed to

operate on these directories are sequenced and synchronized as described above; however, file creation

within such directories remains local to their directory stripe and, therefore, avoids synchronous I/O and

executes with full performance. Distributed rename and hardlink operations will be supported so that

they work as expected within a single striped directory.

Striped Directories remove the limit on the maximum number of entries in a single Lustre directory

(currently 100 million for ldiskfs) and increases both the maximum single client open files limit and the

peak rate at which multiple threads in a single client can create files in a single directory.

Technical Debt

The work that will be done for the Remote Directories and Striped Directories subprojects is targeted to

the restructured OSD code base that will allow the DNE feature to operate on different back-end file

systems. This allows a cleaner implementation and removes one layer of the old metadata stack. As

mentioned above, it also implements OST FIDs which overcomes limitations of the Lustre protocol that

would otherwise limit the maximum number of MDTs to 8.

Project 3. Lustre File System Checker

Technical Description and Approach

Contractor shall develop an online file system checker and scrubber (to be called LFSCK) that will

maintain distributed coherency across the file system though consistency checks between MDT inodes,

OST objects and hard links. For DNE file systems there are additional consistency checks for directory

references across MDTs.

Subproject 3.1: Inode Iterator & OI Scrub

OI Scrub will implement a kernel process for traversal of all inodes on the MDT, and will verify that the

FID attribute stored in each inode is correctly stored in the Object Index (OI). Any corrupt or incorrect

OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

6

entries are fixed to ensure that all the FID to inode mappings in the Object Index are correct. This is

required for correct MDT operation after a file-level backup/restore.

The inode iteration will be controlled from userspace so that it can be launched periodically, or manually

after the MDT is restored. The MDT device can also be configured to verify all OI lookups, and if it

detects any inconsistencies during operation, it can automatically launch a full scan. It will also be

possible to rate-limit the iteration rate to avoid impacting the performance of other file system

operations.

OI Scrub provides the foundation for later subprojects of the distributed file system check.

Subproject 3.2: MDT-OST Consistency

MDT-OST consistency will implement functionality for distributed verification and repair of the MDT

inode to OST object mapping. This will add additional functionality while the MDT is iterating over the

inodes (see Subproject 3.1) to check the file layout (LOV EA) to verify that the objects referenced in the

file layout exist and that each object has a back reference to the correct MDT inode. Incorrect or missing

back pointers on the OST objects will be corrected, and missing objects will be recreated when detected.

The UID and GID of OST objects will also be verified to match that of the MDT inode to ensure correct

quota allocation. After the MDT iteration is complete, any unreferenced OST objects will be linked into

a lost+found directory.

Subprojects 3.1 and 3.2 together constitute a complete replacement of the existing LFSCK utility for

local file systems. This will allow complete checking of non-DNE file systems while the file system is

online.

Subproject 3.3: MDT-MDT Consistency

MDT-MDT Consistency will add concurrent distributed verification and repair for DNE file systems.

This will add functionality while the MDT is iterating over its inodes to check that directory entries

reference inodes correctly and consistently with each inode’s back-pointer to its parent directory. This

includes cross-MDT references where the directory entry and inode are located on different MDTs.

Incorrect back pointers and orphan inodes will be resolved when detected. This will allow complete

checking of DNE file systems.

OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

7

Subproject 3.4: Performance

This subproject will ensure LFSCK is ready to be used in production environments. It will characterize

and optimize the performance of the features implemented in Subprojects 3.1-3.3, ensure that the

performance impact of background scrubbing is sufficiently controlled, and determine whether Lustre

protocol modifications (e.g. support for aggregate RPCs) are required. Administrative controls and

monitoring will be finalized and documentation and procedures will be provided for system

administrators. This subproject will also characterize e2fsck performance in order to understand, and

possibly reduce, the time required in the offline e2fsck step needed to check ldiskfs OSDs.

Technical Debt

Subproject 3.1 restores the ability present for pre-2.x MDT file systems to be backed up and restored

using normal file-level tools such as tar and rsync. Without LFSCK Subproject 3.1, Lustre 2.x MDTs

can only be backed up and restored using device level tools, such as "dd", that copy the entire device.

Completion of Subproject 3.2 eliminates the need to use the old stand-alone lfsck tool to check the

distributed Lustre state. The old lfsck tool is slow to use, unusable at large scales and causes a

significant burden on the maintenance of the Lustre-patched e2fsprogs due to the need to link in an

external database package. The old lfsck is not portable to different back-end file systems whereas the

new lfsck tool will be independent of the back-end file system type.

Project Approach

Technical Approach

Contractor shall use a rigorous development process, which focuses on the early processes in the

software development lifecycle (SDLC) to properly define the requirements and solutions early in the

process. By focusing early in the project on the Scope Clarification, Solution Architecture, and High-

Level Designs (HLD), Contractor shall define proper solutions early, eliminate defects early, and keep

OpenSFS better informed throughout the process.

Management Approach

This section identifies the standard processes used when developing any of the subprojects, and will be

used for each of the subprojects listed above. If there is a planned variation to these steps, for example

when a Solution Architecture document is not necessary, this is explicitly identified below.

OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

8

Project Milestone Detailed Overview

1. Scope Statement: Contractor shall provide a brief (2-3 pages) summary of their understanding

of the problem statement and resulting project scope to be reviewed by the OpenSFS Project

Approval Committee (PAC) and submitted for approval or rejection by the Contract

Administrator (CA). This statement shall include:

a. Problem statement

b. Statement of high-level project requirements/goals to be satisfied

c. Statement of in-scope and out-of-scope work for project

d. Statement of project assumptions or constraints

e. Statement of key deliverables and milestones

2. Solution Architecture: Contractor shall provide a document that outlines requirements, use

cases, and a solution framework in an effort to address items defined in the scope statement. The

Solution Architecture shall be reviewed by the PAC and submitted for approval or rejection by

the CA. This document shall include:

a. Identification of requirements that address the subproject requirement

b. Defined list of use cases for Test Plan

c. Defined list of Acceptance Criteria-the acceptance criteria will be defined for the entire

subproject (excluding the Delivery task) and are measured during the Demonstration

Milestone.

d. Proposed high-level solution that addresses the subproject requirements

3. High-Level Design (HLD): Contractor shall document a recommended solution that addresses

the subproject requirements. This document shall describe how the solution will work including

basic protocol structures as applicable. The proposed solution shall be documented with the

elements below and reviewed by the PAC and submitted for approval or rejection by the CA:

a. Description of the solution elements/implementation components and how they will work

b. Explanation of why/how the proposed solution will address the subproject requirements

c. Identify any risks or unknowns with the proposed solution

d. Define API and protocol changes, if applicable

e. Estimation of engineering and unit testing effort needed to complete the solution

f. Prototype code for the solution, if complexity requires

4. Implementation: Contractor shall complete implementation and unit testing for the approved

solution. Contractor shall regularly report feature development progress including progress

metrics at project meetings and engineers shall share interim unit testing results as they are

available. OpenSFS at its discretion may request a code review. Completion of the

implementation phase shall occur when the agreed to solution has been completed up to and

OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

9

including unit testing and this functionality can be demonstrated on a test cluster. Code Reviews

shall include:

a. Discussion led by Contractor engineer providing an overview of Lustre source code

changes

b. Review of any new unit test cases that were developed to test changes

5. Demonstration Upon functional completion of the feature, Contractor shall demonstrate the

appropriate functionality of the subproject. This shall be done through execution of test cases

designed to prove the acceptance criteria defined during the Solution Architecture.

Demonstration specifics will be defined and mutually agreed to for each subproject in the scope

and architecture phases.

a. Functional Test Plan: Contractor shall develop and recommend a functional test plan, as

defined by OpenSFS, designed to demonstrate the functional completeness of the feature.

The results of functional testing with supporting documentation will be presented to

OpenSFS for review.

b. Performance Test Execution: Contractor shall define and recommend a set of

performance tests as defined by OpenSFS to document the performance characteristics

for performance related features. Contractor shall execute these tests and present results

of these tests to OpenSFS for review.. OpenSFS shall provide adequate test platforms

when scale is necessary for performance testing as recommended by Contractor and

defined by OpenSFS.

6. Delivery: Contractor is planning for annual feature releases and quarterly bug-fix releases.

Contractor shall maintain its own Lustre repository that will be open to the community. All

features and fixes from Contractor will be submitted to the community for inclusion in the

canonical Lustre tree. All software development within the scope of this agreement shall be

conducted in Lustre repository that is open to the community. Contractor’s completion of this

milestone shall be based on Contractor’s integration of the project development branch into the

Contractor Lustre tree and integration of these features into a standard Contractor supported

release.

Acceptance by OpenSFS of Contractor’s completion of each subproject shall be based on Contractor’s

integration of the project development branch into the Contractor Lustre tree and integration of these

features into a standard Contractor supported release. This release will then be tested within four (4)

weeks or 20 business days, by OpenSFS (performance, stability, feature set compliance) for final

acceptance or rejection. No written response from OpenSFS shall constitute implicit acceptance and

approval. Contractor will land the project branch to the tree following internal landing practices and

policies.

OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

10

Project Approval Committee

OpenSFS shall designate a Project Approval Committee (PAC), comprised of community members that

shall have final and documented authority for project-level decision making. The purpose of the PAC is

to both facilitate clear decision-making throughout the project and provide an avenue for community

collaboration during the project. Timely decision-making will support the advancement of projects and

ensure that OpenSFS is well informed about project milestone progress. The OpenSFS board-appointed

Technical Representative shall serve as committee chair of the PAC and shall have final authority on all

decisions of the PAC subject to the discretion of the OpenSFS board.

OpenSFS shall openly declare the membership of this committee and shall only change this membership

during the course of the project with advance notification to Contractor.

Milestone-Task Approvals

A milestone-task is defined as the work or effort necessary to complete a specific project milestone, as

described in Project Milestone Detailed Overview sub-section within this document, and is a sub-

component or step along the way to completing a sub-project or project within the overall contract.

Approval will be required from the OpenSFS Contract Administrator in writing (email is

acceptable) before Whamcloud starts work on a milestone-task.

Approval will be required from the Contract Administrator at the end of each milestone-task, for

Whamcloud to invoice for the milestone.

For all requested approvals, the Contract Administrator, will have 2 weeks (10 business days) from work

submission or decision request to provide feedback and render a decision. No response from OpenSFS

shall constitute implicit acceptance and approval. If at a later time there is a dispute by OpenSFS, a

separate resolution meeting will be held between OpenSFS PAC and Whamcloud Senior Leadership to

include the CEO and CTO.

Subproject Termination

The Contract Administrator reserves the right to terminate any subproject at any time. In the event of

termination of a subproject the Contractor shall terminate work and payment shall be made, if

applicable, in accordance with the Terms and Conditions. Milestone will be considered complete once

completion is recommended in writing (email is acceptable) by the PAC and approved by the Contract

Administrator.

OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

11

Project Planning

Projects contained within this SOW are comprised of Research and Development engineering effort and

as such the solutions are not necessarily straightforward or easy to determine. Contractor shall make best

efforts to define appropriate target delivery dates based on information available.

With the completion of each milestone, Contractor shall deliver updated estimates for both interim

milestone delivery and effort estimates using data and information acquired during the process of the

project to refine estimates.

If, during the course of a Research and Development project, information is discovered that was

previously unknown and significantly complicates the solution, Contractor shall present this new

evidence to OpenSFS with a list of proposed alternate solutions. Some solutions may become so large as

to not be able to be completed under the fixed price of the contract. In this event, Contractor shall offer

alternate options from which OpenSFS may select that can be completed within the bounds of the

contract.

Reporting

Contractor shall submit a monthly progress report in a format as provided by Contractor and reasonably

acceptable by OpenSFS no less than two business days after the last day of each month highlighting

progress made on each deliverable. Contractor shall provide documentation of completion as defined in

Project Milestones Overview for each deliverable.

Project Meetings

Weekly project calls shall be held with participation from both Contractor and OpenSFS project team

members. The purpose of this meeting is for project team members to gather to discuss progress against

plan. OpenSFS attendance shall include at least one PAC member. Contractor attendance to include

Senior Engineer assigned to project, Project Manager assigned to project, and any relevant development

engineers depending on topic(s) of discussion. Contractor shall provide a standard project review

template as recommended by Contractor and defined by OpenSFS to include progress since the last

meeting, current activities, risks and issues. Meeting minutes shall be recorded at all project meetings

and stored as project artifacts.

Software Licensing and Source Code

All software developed under this contract shall be submitted under the terms of the OpenSFS

contribution agreement.

OpenSFS Lustre Development

Schedule of Articles

Contract No. SFS-DEV-001

12

Lustre Community Development

Contractor shall submit all GPL Lustre software changes (including test cases) to the community

canonical Lustre code base. It is at community’s discretion to incorporate Contractor’s changes into the

canonical Lustre tree. Contractor shall maintain a separate code repository and make this available to the

broader Lustre community.

Lustre Software Enhancements

All changes to Lustre software shall be made against a production release of Lustre 2.x for this proposal.

Changes made to Lustre as part of this contract will break interoperation between Lustre 2.x servers and

Lustre 1.8.x clients. No development or changes will be made against the Lustre 1.8.x or 1.6.x code

base. Contractor shall independently test and compile all modifications against a production release of

Lustre (Production Lustre Release + Contractor patches).

Vendor Neutrality

All software shall be designed and developed to be broadly applicable to the entire Lustre. Contractor

shall not design or implement to benefit or exploit a particular hardware configuration. The Lustre

software has always been designed to work on a wide variety of vendor server and storage platforms;

Contractor shall not change this fundamental Lustre design principle.

OpenSFS Furnished Access and Hardware

OpenSFS or its constituent members shall provide access to a test cluster (configuration to be

recommended by Contractor and defined by OpenSFS) that will be available throughout the duration of

Projects 1 & 2. Contractor shall be notified of any changes to this test cluster throughout the duration of

Projects 1 & 2.

